25 Mar

一本对称闯物理:相对论力学(二)

从这个系列的第一篇文章到本文,已经隔了好多天。其实本文的内容是跟第一篇的内容同时完成的,为什么这么久才更新呢?原因有二,其一是随着春天的到来人也开始懒起来了,颓废呀~;其二,我在思考着规范变换的问题。按照朗道《场论》的逻辑,发展完质点力学理论后,下一步就是发展场论,诸如电磁场、引力场等。但是场论中有个让我比较困惑的东西,即场论存在着“规范不变性”。按照一般观点,我们是将规范不变性看作是电磁场方程的一个结果,即推导出电磁场的方程后,“发现”它具有规范不变性。但是如果用本文的方法,即假定场有这种对称性,然后就可以构建出场方程了。可是,为什么场存在着规范不变性,我还未能思考清楚。据我阅读到的资料来看,这个不变性似乎跟广义不变性有关(电磁场也是,这似乎说明即使在平直时空的电磁场理论中也暗示了广义不变性?)。还有,似乎这个不变性需要在量子场论中才能得到比较满意的解释,可是这样的话,就离我还很远了。

好吧,我们还是先回到相对论力学的推导中。

“无”中生有

上一篇文章我们已经构建了相对论力学的无穷小生成元,并进行了延拓。我已经说过,仅需要无穷小的变换形式,就可以构建出完成的相对论力学定律出来(当然这需要一些比较“显然”的假设)。这是个几乎从“无”到有的过程,也是本文标题的含义所在。另一方面,这种从局部到整体的可能性,也给我们带来一些启示:假如方法是普适的,那么可以由此构造出我们需要的物理定律来,包括电磁场、引力场方程等。(当然,我离这个目标还有点远。)

点击阅读全文...

23 Dec

鬼斧神工:求n维球的体积

今天早上同学问了我有关伽马函数和$n$维空间的球体积之间的关系,我记得我以前想要研究,但是并没有落实。既然她提问了,那么就完成这未完成的计划吧。

标准思路

简单来说,$n$维球体积就是如下$n$重积分
$$V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}dx_1 dx_2\dots dx_n$$
用更加几何的思路,我们通过一组平行面($n-1$维的平行面)分割,使得$n$维球分解为一系列近似小柱体,因此,可以得到递推公式
$$V_n (r)=\int_{-r}^r V_{n-1} \left(\sqrt{r^2-t^2}\right)dt$$
设$t=r\sin\theta_1$,就有
$$V_n (r)=r\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-1} \left(r\cos\theta_1\right)\cos\theta_1 d\theta_1$$

点击阅读全文...

6 Jun

闲聊:神经网络与深度学习

神经网络

神经网络

在所有机器学习模型之中,也许最有趣、最深刻的便是神经网络模型了。笔者也想献丑一番,说一次神经网络。当然,本文并不打算从头开始介绍神经网络,只是谈谈我对神经网络的个人理解。如果希望进一步了解神经网络与深度学习的朋友,请移步阅读下面的教程:
http://deeplearning.stanford.edu/wiki/index.php/UFLDL教程

http://blog.csdn.net/zouxy09/article/details/8775360

机器分类

这里以分类工作为例,数据挖掘或机器学习中,有很多分类的问题,比如讲一句话的情况进行分类,粗略点可以分类为“积极”或“消极”,精细点分为开心、生气、忧伤等;另外一个典型的分类问题是手写数字识别,也就是将图片分为10类(0,1,2,3,4,5,6,7,8,9)。因此,也产生了很多分类的模型。

点击阅读全文...

4 Aug

文本情感分类(二):深度学习模型

语言处理

语言处理

《文本情感分类(一):传统模型》一文中,笔者简单介绍了进行文本情感分类的传统思路。传统的思路简单易懂,而且稳定性也比较强,然而存在着两个难以克服的局限性:一、精度问题,传统思路差强人意,当然一般的应用已经足够了,但是要进一步提高精度,却缺乏比较好的方法;二、背景知识问题,传统思路需要事先提取好情感词典,而这一步骤,往往需要人工操作才能保证准确率,换句话说,做这个事情的人,不仅仅要是数据挖掘专家,还需要语言学家,这个背景知识依赖性问题会阻碍着自然语言处理的进步。

点击阅读全文...

6 Sep

基于双向LSTM和迁移学习的seq2seq核心实体识别

暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下。模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值。

比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别。这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起。如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的思路(如TF-IDF抽取)是行不通的,因为单句中的核心实体可能就只出现一次,这时候统计估计是不可靠的,最好能够从语义的角度来理解。我一开始就是从“核心识别”入手,使用的方法类似QA系统:

1、将句子分词,然后用Word2Vec训练词向量;

2、用卷积神经网络(在这种抽取式问题上,CNN效果往往比RNN要好)卷积一下,得到一个与词向量维度一样的输出;

3、损失函数就是输出向量跟训练样本的核心词向量的cos值。

点击阅读全文...

2 Apr

【不可思议的Word2Vec】 1.数学原理

对于了解深度学习、自然语言处理NLP的读者来说,Word2Vec可以说是家喻户晓的工具,尽管不是每一个人都用到了它,但应该大家都会听说过它——Google出品的高效率的获取词向量的工具。

Word2Vec不可思议?

大多数人都是将Word2Vec作为词向量的等价名词,也就是说,纯粹作为一个用来获取词向量的工具,关心模型本身的读者并不多。可能是因为模型过于简化了,所以大家觉得这样简化的模型肯定很不准确,所以没法用,但它的副产品词向量的质量反而还不错。没错,如果是作为语言模型来说,Word2Vec实在是太粗糙了。

但是,为什么要将它作为语言模型来看呢?抛开语言模型的思维约束,只看模型本身,我们就会发现,Word2Vec的两个模型 —— CBOW和Skip-Gram —— 实际上大有用途,它们从不同角度来描述了周围词与当前词的关系,而很多基本的NLP任务,都是建立在这个关系之上,如关键词抽取、逻辑推理等。这几篇文章就是希望能够抛砖引玉,通过介绍Word2Vec模型本身,以及几个看上去“不可思议”的用法,来提供一些研究此类问题的新思路。

点击阅读全文...

24 Apr

最小熵原理(二):“当机立断”之词库构建

在本文,我们介绍“套路宝典”第一式——“当机立断”1、导出平均字信息熵的概念,然后基于最小熵原理推导出互信息公式;2、并且完成词库的无监督构建、给出一元分词模型的信息熵诠释,从而展示有关生成套路、识别套路的基本方法和技巧。

这既是最小熵原理的第一个使用案例,也是整个“套路宝典”的总纲。

你练或者不练,套路就在那里,不增不减。

为什么需要词语

从上一篇文章可以看到,假设我们根本不懂中文,那么我们一开始会将中文看成是一系列“字”随机组合的字符串,但是慢慢地我们会发现上下文是有联系的,它并不是“字”的随机组合,它应该是“套路”的随机组合。于是为了减轻我们的记忆成本,我们会去挖掘一些语言的“套路”。第一个“套路”,是相邻的字之间的组合定式,这些组合定式,也就是我们理解的“词”。

平均字信息熵

假如有一批语料,我们将它分好词,以词作为中文的单位,那么每个词的信息量是$-\log p_w$,因此我们就可以计算记忆这批语料所要花费的时间为
$$-\sum_{w\in \text{语料}}\log p_w\tag{2.1}$$
这里$w\in \text{语料}$是对语料逐词求和,不用去重。如果不分词,按照字来理解,那么需要的时间为
$$-\sum_{c\in \text{语料}}\log p_c\tag{2.2}$$

点击阅读全文...

18 May

简明条件随机场CRF介绍(附带纯Keras实现)

笔者去年曾写过博文《果壳中的条件随机场(CRF In A Nutshell)》,以一种比较粗糙的方式介绍了一下条件随机场(CRF)模型。然而那篇文章显然有很多不足的地方,比如介绍不够清晰,也不够完整,还没有实现,在这里我们重提这个模型,将相关内容补充完成。

本文是对CRF基本原理的一个简明的介绍。当然,“简明”是相对而言中,要想真的弄清楚CRF,免不了要提及一些公式,如果只关心调用的读者,可以直接移到文末。

图示

按照之前的思路,我们依旧来对比一下普通的逐帧softmax和CRF的异同。

逐帧softmax

CRF主要用于序列标注问题,可以简单理解为是给序列中的每一帧都进行分类,既然是分类,很自然想到将这个序列用CNN或者RNN进行编码后,接一个全连接层用softmax激活,如下图所示

逐帧softmax并没有直接考虑输出的上下文关联

逐帧softmax并没有直接考虑输出的上下文关联

点击阅读全文...