19 Mar

为什么需要残差?一个来自DeepNet的视角

《训练1000层的Transformer究竟有什么困难?》中我们介绍了微软提出的能训练1000层Transformer的DeepNet技术。而对于DeepNet,读者一般也有两种反应,一是为此感到惊叹而点赞,另一则是觉得新瓶装旧酒没意思。出现后一种反应的读者,往往是因为DeepNet所提出的两个改进点——增大恒等路径权重和降低残差分支初始化——实在过于稀松平常,并且其他工作也出现过类似的结论,因此很难有什么新鲜感。

诚然,单从结论来看,DeepNet实在算不上多有意思,但笔者觉得,DeepNet的过程远比结论更为重要,它有意思的地方在于提供了一个简明有效的梯度量级分析思路,并可以用于分析很多相关问题,比如本文要讨论的“为什么需要残差”,它就可以给出一个比较贴近本质的答案。

增量爆炸

为什么需要残差?答案是有了残差才更好训练深层模型,这里的深层可能是百层、千层甚至万层。那么问题就变成了为什么没有残差就不容易训练深层模型呢?

点击阅读全文...

22 Apr

GAU-α:尝鲜体验快好省的下一代Attention

《FLASH:可能是近来最有意思的高效Transformer设计》中,我们介绍了GAU(Gated Attention Unit,门控线性单元),在这里笔者愿意称之为“目前最有潜力的下一代Attention设计”,因为它真正达到了“更快(速度)、更好(效果)、更省(显存)”的特点。

然而,有些读者在自己的测试中得到了相反的结果,比如收敛更慢、效果更差等,这与笔者的测试结果大相径庭。本文就来分享一下笔者自己的训练经验,并且放出一个尝鲜版“GAU-α”供大家测试。

GAU-α

首先介绍一下开源出来的“GAU-α”在CLUE任务上的成绩单:
$$\small{\begin{array}{c|ccccccccccc}
\hline
& \text{iflytek} & \text{tnews} & \text{afqmc} & \text{cmnli} & \text{ocnli} & \text{wsc} & \text{csl} & \text{cmrc2018} & \text{c3} & \text{chid} & \text{cluener}\\
\hline
\text{BERT} & 60.06 & 56.80 & 72.41 & 79.56 & 73.93 & 78.62 & 83.93 & 56.17 & 60.54 & 85.69 & 79.45 \\
\text{RoBERTa} & 60.64 & \textbf{58.06} & 74.05 & 81.24 & 76.00 & \textbf{87.50} & 84.50 & 56.54 & 67.66 & 86.71 & 79.47\\
\text{RoFormer} & 60.91 & 57.54 & 73.52 & 80.92 & \textbf{76.07} & 86.84 & 84.63 & 56.26 & 67.24 & 86.57 & 79.72\\
\text{RoFormerV2}^* & 60.87 & 56.54 & 72.75 & 80.34 & 75.36 & 80.92 & 84.67 & 57.91 & 64.62 & 85.09 & \textbf{81.08}\\
\hline
\text{GAU-}\alpha & \textbf{61.41} & 57.76 & \textbf{74.17} & \textbf{81.82} & 75.86 & 79.93 & \textbf{85.67} & \textbf{58.09} & \textbf{68.24} & \textbf{87.91} & 80.01\\
\hline
\end{array}}$$

点击阅读全文...

20 Apr

你的语言模型有没有“无法预测的词”?

众所周知,分类模型通常都是先得到编码向量,然后接一个Dense层预测每个类别的概率,而预测时则是输出概率最大的类别。但大家是否想过这样一种可能:训练好的分类模型可能存在“无法预测的类别”,即不管输入是什么,都不可能预测出某个类别$k$,类别$k$永远不可能成为概率最大的那个。

当然,这种情况一般只出现在类别数远远超过编码向量维度的场景,常规的分类问题很少这么极端的。然而,我们知道语言模型本质上也是一个分类模型,它的类别数也就是词表的总大小,往往是远超过向量维度的,那么我们的语言模型是否有“无法预测的词”?(只考虑Greedy解码)

是否存在

ACL2022的论文《Low-Rank Softmax Can Have Unargmaxable Classes in Theory but Rarely in Practice》首先探究了这个问题,正如其标题所言,答案是“理论上存在但实际出现概率很小”。

点击阅读全文...

13 Jun

生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼

说到生成模型,VAEGAN可谓是“如雷贯耳”,本站也有过多次分享。此外,还有一些比较小众的选择,如flow模型VQ-VAE等,也颇有人气,尤其是VQ-VAE及其变体VQ-GAN,近期已经逐渐发展到“图像的Tokenizer”的地位,用来直接调用NLP的各种预训练方法。除了这些之外,还有一个本来更小众的选择——扩散模型(Diffusion Models)——正在生成模型领域“异军突起”,当前最先进的两个文本生成图像——OpenAI的DALL·E 2和Google的Imagen,都是基于扩散模型来完成的。

Imagen“文本-图片”的部分例子

Imagen“文本-图片”的部分例子

从本文开始,我们开一个新坑,逐渐介绍一下近两年关于生成扩散模型的一些进展。据说生成扩散模型以数学复杂闻名,似乎比VAE、GAN要难理解得多,是否真的如此?扩散模型真的做不到一个“大白话”的理解?让我们拭目以待。

点击阅读全文...

15 Jul

可能有读者留意到,这次更新相对来说隔得比较久了。事实上,在上周末时就开始准备这篇文章了,然而笔者低估了这个问题的难度,几乎推导了整整一周,仍然还没得到一个完善的结果出来。目前发出来的,仍然只是一个失败的结果,希望有经验的读者可以指点指点。

在文章《将“Softmax+交叉熵”推广到多标签分类问题》中,我们提出了一个多标签分类损失函数,它能自动调节正负类的不平衡问题,后来在《多标签“Softmax+交叉熵”的软标签版本》中我们还进一步得到了它的“软标签”版本。本质上来说,多标签分类就是“$n$个2分类”问题,那么相应的,“$n$个$m$分类”的损失函数又该是怎样的呢?

这就是本文所要探讨的问题。

点击阅读全文...

19 Jul

生成扩散模型漫谈(三):DDPM = 贝叶斯 + 去噪

到目前为止,笔者给出了生成扩散模型DDPM的两种推导,分别是《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中的通俗类比方案和《生成扩散模型漫谈(二):DDPM = 自回归式VAE》中的变分自编码器方案。两种方案可谓各有特点,前者更为直白易懂,但无法做更多的理论延伸和定量理解,后者理论分析上更加完备一些,但稍显形式化,启发性不足。

贝叶斯定理(来自维基百科)

贝叶斯定理(来自维基百科)

在这篇文章中,我们再分享DDPM的一种推导,它主要利用到了贝叶斯定理来简化计算,整个过程的“推敲”味道颇浓,很有启发性。不仅如此,它还跟我们后面将要介绍的DDIM模型有着紧密的联系。

点击阅读全文...

20 Jun

Ladder Side-Tuning:预训练模型的“过墙梯”

如果说大型的预训练模型是自然语言处理的“张良计”,那么对应的“过墙梯”是什么呢?笔者认为是高效地微调这些大模型到特定任务上的各种技巧。除了直接微调全部参数外,还有像AdapterP-Tuning等很多参数高效的微调技巧,它们能够通过只微调很少的参数来达到接近全量参数微调的效果。然而,这些技巧通常只是“参数高效”而并非“训练高效”,因为它们依旧需要在整个模型中反向传播来获得少部分可训练参数的梯度,说白了,就是可训练的参数确实是少了很多,但是训练速度并没有明显提升。

最近的一篇论文《LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning》则提出了一个新的名为“Ladder Side-Tuning(LST)”的训练技巧,它号称同时达到了参数高效和训练高效。是否真有这么理想的“过墙梯”?本来就让我们一起来学习一下。

点击阅读全文...

28 Jun

“维度灾难”之Hubness现象浅析

这几天读到论文《Exploring and Exploiting Hubness Priors for High-Quality GAN Latent Sampling》,了解到了一个新的名词“Hubness现象”,说的是高维空间中的一种聚集效应,本质上是“维度灾难”的体现之一。论文借助Hubness的概念得到了一个提升GAN模型生成质量的方案,看起来还蛮有意思。所以笔者就顺便去学习了一下Hubness现象的相关内容,记录在此,供大家参考。

坍缩的球

“维度灾难”是一个很宽泛的概念,所有在高维空间中与相应的二维、三维空间版本出入很大的结论,都可以称之为“维度灾难”,比如《n维空间下两个随机向量的夹角分布》中介绍的“高维空间中任何两个向量几乎都是垂直的”。其中,有不少维度灾难现象有着同一个源头——“高维空间单位球与其外切正方体的体积之比逐渐坍缩至0”,包括本文的主题“Hubness现象”亦是如此。

点击阅读全文...