《费恩曼物理讲义》在线版
By 苏剑林 | 2013-12-28 | 39378位读者 | 引用《交换代数导引》参考答案
By 苏剑林 | 2017-07-03 | 35420位读者 | 引用这学期我们的一门课是《交换代数》,是本科抽象代数的升级版。我们用的教材是Atiyah的《Introduction to Commutative Algebra》(交换代数导引),而且根据老师的上课安排,还需要我们把部分课后习题完成并讲解...不得不说这门课上得真累啊~
习题做到后面,我干脆懒得起草稿了,直接把做的答案用LaTeX录入了,既方便排版也方便修改。在这里分享给有需要的读者~答案是用中文写的,注释比较详细,适合刚学这门课的同学~
笔者所做的部分:《交换代数导引》参考答案.pdf
当然这份答案只包括老师对我们的要求的那部分习题,下面是网上搜索到的完整的习题解答,英文版的:
网上找到的答案:Jeffrey Daniel Kasik Carlson - Exercises to Atiya.pdf
如果答案有问题,欢迎留言指出。
从对称角度看代数方程
By 苏剑林 | 2011-04-29 | 26169位读者 | 引用这些日子来,BoJone迷上了两个东西:最小作用量和对称。这两个“东西”在物理学中几乎占据着最重要的地位,前边已经说过,通过最小作用量原理能够构建起当代整个物理学的框架,体现着自然界的“经济头脑”;后者则是守恒的体现,也对应着自然界的“美感”。本文主要是从最简单的层面谈谈对称。
对称的东西很重要,很美。当然,这里所指的是数学上的对称。数学上有很多问题都可以列出对称的式子,而且由于其对称性,因此求解过程一般比不对称的式子简单不少。据说,当代最前沿的物理学框架都是用群论描述的(包括广义相对论),而群论正是用来研究对称的有力工具,可见,对称和对称的方法在实际中有着广泛的应用。(当然本文不讨论群论,关键是BoJone也不懂群论...^_^)
我们先来看二次方程,根据韦达定理,二次方程都可以表达成下面的形式:
$$\begin{aligned}x_1+x_2=a \\ x_1 x_2=b\end{aligned}$$
这是一个多对称的形式!这里的对称体现在将$x_1,x_2$互相替换后方程形式依然不变。如果我们设$x_1=y_1+y_2,x_2=y_1-y_2$,就可以变成
$$2y_1=a,y_1^2-y_2^2=b$$
这样很快就求出$y_1,y_2$了,继而能够求出方程的两个根。
求解微分方程的李对称方法(一)
By 苏剑林 | 2013-10-29 | 27610位读者 | 引用在这篇日志发表之前,科学空间在整个十月就只是在国庆期间发了一篇小感想,这是比较少见的。一个小原因是这学期社团(广播台)方面的活动有点多,当然这不是主要的,其实这个月我大多数课余时间放到了两件事情上:一是无线电路的入门,二就是本文所要讲的《求解微分方程的李对称方法》。
李对称方法主要是通过发现微分方程的对称性来求解微分方程。我首次接触到这个方法是在一本叫《微分方程与数学物理问题》的书上边,书中写得很清晰易懂,后来我还买了类似的《微分方程的对称与积分方法》,后者相对抽象一些,讨论也深入一些。在我目前发现的中文书籍中,这是唯一的两本以李对称方法求解微分方程为主题的书。这两本书还有一个共同特点,就是它们都是外国教材的翻译版。
[SETI-50周年]茫茫宇宙觅知音
By 苏剑林 | 2011-02-03 | 20023位读者 | 引用转载自2011年1月的《天文爱好者》 作者:薛国轩
“多萝西计划”再探地外文明
据美国空间网站2010年11月13日报道,在人类“探索地外文明”(英文缩写为SETI)50周年纪念之际,世界多个国家的天文学家从本月起再度展开“且听外星人”的联合行动,以延续开始于1960年的“奥兹玛计划”。新的探索活动被命名为“多萝西计划”(Project Dorothy),已于11月5日正式启动,将持续整整一个月时间,来自澳大利亚、日本、韩国、意大利、荷兰、法国、阿根廷和美国的天文学家参与其中。他们将把大大小小的望远镜指向地球周围的一些星球,以期收听到外星人的“天外来音”。
《向量》系列——1.向心力公式证明
By 苏剑林 | 2010-07-15 | 57980位读者 | 引用向量在几何和物理中都有极其重要的作用,现在就让我们来看如何用向量研究物理中的圆周运动。
首先我们必须了解一些基础:
1.在向量中,只要一条“向径”($\vec{r}$)就可以描述出物体的运动,而不需要建立坐标系。这就是向量应用于物理的原因:物理定律不应该依赖于坐标系,而向量恰恰也不依赖于坐标系!
2.牛顿第二定律:$\vec{F}=m\vec{a}$
3.以及一些向量的微积分运算等(可以查阅维基百科或者相关资料)
在下面及以后的文章描述中,为了大家的阅读方便,把向量写成$\vec{r}$的形式,而非把字母加粗。一般情况下,在本站的描述中,有$|\vec{r}|=r,|\dot{\vec{r}}|=v,|\ddot{\vec{r}}|=a$。但是,$\dot{r}=\frac{d|\vec{r}|}{dt} != |\dot{\vec{r}}|$
《向量》系列——2.曲率半径
By 苏剑林 | 2010-07-18 | 55122位读者 | 引用圆周是如此地和谐与完美,致使数学家和物理学家对它钟爱有加。几何上可以把一条曲线的局部看做一个圆弧,利用圆的性质去研究它(在数学上,曲率半径的倒数就是曲率,曲率越大,曲线越弯曲);物理学家喜欢把一个质点的曲线运动轨迹的局部看做圆周运动,利用圆周运动的方法来描述这种运动。这两种研究方法都告诉了我们,两种不同的“线”在极小的范围内可以等效的,这也为我们对科学进行探究提供了一点指导思想:把未知变已知,以已知看未知。物理学和数学的两种处理方法中,有一点是殊途同归的:那就是看轨迹看成一个圆后,圆的半径是多少?我们首先得求出它。
在数学分析上可以利用微积分的相关知识来推导曲率半径公式,而BoJone则更偏爱物理方法,通过物理和向量知识的结合,推导出曲率半径公式,让BoJone感到“别有一番风味”。
最近评论