宇宙驿站感谢国家天文台LAMOST项目之“宇宙驿站”提供网络空间和数据库资源! 感谢国家天文台崔辰州博士等人的多方努力和技术支持!

版权科学空间致力于知识分享,所以欢迎您转载本站文章,但转载本站内容必须遵循 署名-非商业用途-保持一致 的创作共用协议。

参与科学空间

为了保证你的利益,推荐你注册为本站会员。同时欢迎通过邮件或留言进行交流、建议或反馈科学空间的问题。
会员注册 会员登录 查看全站文章归档页

24 Jun

VQ-VAE的简明介绍:量子化自编码器

印象中很早之前就看到过VQ-VAE,当时对它并没有什么兴趣,而最近有两件事情重新引起了我对它的兴趣。一是VQ-VAE-2实现了能够匹配BigGAN的生成效果(来自机器之心的报道);二是我最近看一篇NLP论文《Unsupervised Paraphrasing without Translation》时发现里边也用到了VQ-VAE。这两件事情表明VQ-VAE应该是一个颇为通用和有意思的模型,所以我决定好好读读它。

个人复现的VQ-VAE在CelebA上的重构效果。可以留意到细节保留得还不错,但稍微放大后能留意到仍有一些模糊感。

个人复现的VQ-VAE在CelebA上的重构效果。可以留意到细节保留得还不错,但稍微放大后能留意到仍有一些模糊感。

点击阅读全文...

19 Jun

简述无偏估计和有偏估计

对于大多数读者(包括笔者)来说,他们接触到的第一个有偏估计量,应该是方差
\begin{equation}\hat{\sigma}^2_{\text{有偏}} = \frac{1}{n}\sum_{i=1}^n \left(x_i - \hat{\mu}\right)^2,\quad \hat{\mu} = \frac{1}{n}\sum_{i=1}^n x_i\label{eq:youpianfangcha}\end{equation}
然后又了解到对应的无偏估计应该是
\begin{equation}\hat{\sigma}^2_{\text{无偏}} = \frac{1}{n-1}\sum_{i=1}^n \left(x_i - \hat{\mu}\right)^2\label{eq:wupianfangcha}\end{equation}
在很多人的眼里,公式$\eqref{eq:youpianfangcha}$才是合理的,怎么就有偏了?公式$\eqref{eq:wupianfangcha}$将$n$换成反直觉的$n-1$,反而就无偏了?

下面试图用尽量清晰的语言讨论一下无偏估计和有偏估计两个概念。

点击阅读全文...

18 Jun

当Bert遇上Keras:这可能是Bert最简单的打开姿势

Bert是什么,估计也不用笔者来诸多介绍了。虽然笔者不是很喜欢Bert,但不得不说,Bert确实在NLP界引起了一阵轩然大波。现在不管是中文还是英文,关于Bert的科普和解读已经满天飞了,隐隐已经超过了当年Word2Vec刚出来的势头了。有意思的是,Bert是Google搞出来的,当年的word2vec也是Google搞出来的,不管你用哪个,都是在跟着Google大佬的屁股跑啊~

Bert刚出来不久,就有读者建议我写个解读,但我终究还是没有写。一来,Bert的解读已经不少了,二来其实Bert也就是基于Attention的搞出来的大规模语料预训练的模型,本身在技术上不算什么创新,而关于Google的Attention我已经写过解读了,所以就提不起劲来写了。

Bert的预训练和微调(图片来自Bert的原论文)

Bert的预训练和微调(图片来自Bert的原论文)

总的来说,我个人对Bert一直也没啥兴趣,直到上个月末在做信息抽取比赛时,才首次尝试了Bert。因为后来想到,即使不感兴趣,终究也是得学会它,毕竟用不用是一回事,会不会又是另一回事。再加上在Keras中使用(fine tune)Bert,似乎还没有什么文章介绍,所以就分享一下自己的使用经验。

点击阅读全文...

10 Jun

漫谈重参数:从正态分布到Gumbel Softmax

最近在用VAE处理一些文本问题的时候遇到了对离散形式的后验分布求期望的问题,于是沿着“离散分布 + 重参数”这个思路一直搜索下去,最后搜到了Gumbel Softmax,从对Gumbel Softmax的学习过程中,把重参数的相关内容都捋了一遍,还学到一些梯度估计的新知识,遂记录在此。

文章从连续情形出发开始介绍重参数,主要的例子是正态分布的重参数;然后引入离散分布的重参数,这就涉及到了Gumbel Softmax,包括Gumbel Softmax的一些证明和讨论;最后再讲讲重参数背后的一些故事,这主要跟梯度估计有关。

基本概念

重参数(Reparameterization)实际上是处理如下期望形式的目标函数的一种技巧:
\begin{equation}L_{\theta}=\mathbb{E}_{z\sim p_{\theta}(z)}[f(z)]\label{eq:base}\end{equation}
这样的目标在VAE中会出现,在文本GAN也会出现,在强化学习中也会出现($f(z)$对应于奖励函数),所以深究下去,我们会经常碰到这样的目标函数。取决于$z$的连续性,它对应不同的形式:
\begin{equation}\int p_{\theta}(z) f(z)dz\,\,\,\text{(连续情形)}\qquad\qquad \sum_{z} p_{\theta}(z) f(z)\,\,\,\text{(离散情形)}\end{equation}
当然,离散情况下我们更喜欢将记号$z$换成$y$或者$c$。

点击阅读全文...

7 Jun

端午&高考乱弹:怀念的,也许只是怀念本身

今天是端午节,祝大家诸事顺利。另外,今天也是高考的第一天,还是祝大家诸事顺利。

在这样的节日/特殊日子中,总能勾起很多回忆,产生诸多怀念。昨天我也在QQ空间和朋友圈发了这么一条:

想起当年今日,我观测到了金星凌日。如果各位还没看过,那不好意思了,还要再等98年。

点击阅读全文...

3 Jun

基于DGCNN和概率图的轻量级信息抽取模型

背景:前几个月,百度举办了“2019语言与智能技术竞赛”,其中有三个赛道,而我对其中的“信息抽取”赛道颇感兴趣,于是报名参加。经过两个多月的煎熬,比赛终于结束,并且最终结果已经公布。笔者从最初的对信息抽取的一无所知,经过这次比赛的学习和研究,最终探索出在监督学习下做信息抽取的一些经验,遂在此与大家分享。

信息抽取赛道:“科学空间队”在最终的测试结果上排名第七

信息抽取赛道:“科学空间队”在最终的测试结果上排名第七

笔者在最终的测试集上排名第七,指标F1为0.8807(Precision是0.8939,Recall是0.8679),跟第一名相差0.01左右。从比赛角度这个成绩不算突出,但自认为模型有若干创新之处,比如自行设计的抽取结构、CNN+Attention(所以足够快速)、没有用Bert等预训练模型,私以为这对于信息抽取的学术研究和工程应用都有一定的参考价值。

基本分析

信息抽取(Information Extraction, IE)是从自然语言文本中抽取实体、属性、关系及事件等事实类信息的文本处理技术,是信息检索、智能问答、智能对话等人工智能应用的重要基础,一直受到业界的广泛关注。... 本次竞赛将提供业界规模最大的基于schema的中文信息抽取数据集(Schema based Knowledge Extraction, SKE),旨在为研究者提供学术交流平台,进一步提升中文信息抽取技术的研究水平,推动相关人工智能应用的发展。

------ 比赛官方网站介绍

点击阅读全文...

28 May

ON-LSTM:用有序神经元表达层次结构

今天介绍一个有意思的LSTM变种:ON-LSTM,其中“ON”的全称是“Ordered Neurons”,即有序神经元,换句话说这种LSTM内部的神经元是经过特定排序的,从而能够表达更丰富的信息。ON-LSTM来自文章《Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks》,顾名思义,将神经元经过特定排序是为了将层级结构(树结构)整合到LSTM中去,从而允许LSTM能自动学习到层级结构信息。这篇论文还有另一个身份:ICLR 2019的两篇最佳论文之一,这表明在神经网络中融合层级结构(而不是纯粹简单地全向链接)是很多学者共同感兴趣的课题。

ON-LSTM运算流程示意图。主要是将分段函数用cumax光滑化变成可导。

ON-LSTM运算流程示意图。主要是将分段函数用cumax光滑化变成可导。

笔者留意到ON-LSTM是因为机器之心的介绍,里边提到它除了提高了语言模型的效果之外,甚至还可以无监督地学习到句子的句法结构!正是这一点特性深深吸引了我,而它最近获得ICLR 2019最佳论文的认可,更是坚定了我要弄懂它的决心。认真研读、推导了差不多一星期之后,终于有点眉目了,遂写下此文。

在正式介绍ON-LSTM之后,我忍不住要先吐槽一下这篇文章实在是写得太差了,将一个明明很生动形象的设计,讲得异常晦涩难懂,其中的核心是$\tilde{f}_t$和$\tilde{i}_t$的定义,文中几乎没有任何铺垫就贴了出来,也没有多少诠释,开始的读了好几次仍然像天书一样...总之,文章写法实在不敢恭维~

点击阅读全文...

20 May

函数光滑化杂谈:不可导函数的可导逼近

一般来说,神经网络处理的东西都是连续的浮点数,标准的输出也是连续型的数字。但实际问题中,我们很多时候都需要一个离散的结果,比如分类问题中我们希望输出正确的类别,“类别”是离散的,“类别的概率”才是连续的;又比如我们很多任务的评测指标实际上都是离散的,比如分类问题的正确率和F1、机器翻译中的BLEU,等等。

还是以分类问题为例,常见的评测指标是正确率,而常见的损失函数是交叉熵。交叉熵的降低与正确率的提升确实会有一定的关联,但它们不是绝对的单调相关关系。换句话说,交叉熵下降了,正确率不一定上升。显然,如果能用正确率的相反数做损失函数,那是最理想的,但正确率是不可导的(涉及到$\text{argmax}$等操作),所以没法直接用。

这时候一般有两种解决方案;一是动用强化学习,将正确率设为奖励函数,这是“用牛刀杀鸡”的方案;另外一种是试图给正确率找一个光滑可导的近似公式。本文就来探讨一下常见的不可导函数的光滑近似,有时候我们称之为“光滑化”,有时候我们也称之为“软化”。

max

后面谈到的大部分内容,基础点就是$\max$操作的光滑近似,我们有:
\begin{equation}\max(x_1,x_2,\dots,x_n) = \lim_{K\to +\infty}\frac{1}{K}\log\left(\sum_{i=1}^n e^{K x_i}\right)\end{equation}

点击阅读全文...