思考:两个椭圆片能粘合成一个立体吗?
By 苏剑林 | 2019-07-21 | 60302位读者 | 引用“让Keras更酷一些!”:层中层与mask
By 苏剑林 | 2019-07-16 | 150242位读者 | 引用这一篇“让Keras更酷一些!”将和读者分享两部分内容:第一部分是“层中层”,顾名思义,是在Keras中自定义层的时候,重用已有的层,这将大大减少自定义层的代码量;另外一部分就是应读者所求,介绍一下序列模型中的mask原理和方法。
层中层
在《“让Keras更酷一些!”:精巧的层与花式的回调》一文中我们已经介绍过Keras自定义层的基本方法,其核心步骤是定义build
和call
两个函数,其中build
负责创建可训练的权重,而call
则定义具体的运算。
拒绝重复劳动
经常用到自定义层的读者可能会感觉到,在自定义层的时候我们经常在重复劳动,比如我们想要增加一个线性变换,那就要在build
中增加一个kernel
和bias
变量(还要自定义变量的初始化、正则化等),然后在call
里边用K.dot
来执行,有时候还需要考虑维度对齐的问题,步骤比较繁琐。但事实上,一个线性变换其实就是一个不加激活函数的Dense
层罢了,如果在自定义层时能重用已有的层,那显然就可以大大节省代码量了。
用时间换取效果:Keras梯度累积优化器
By 苏剑林 | 2019-07-08 | 80486位读者 | 引用现在Keras中你也可以用小的batch size实现大batch size的效果了——只要你愿意花$n$倍的时间,可以达到$n$倍batch size的效果,而不需要增加显存。
Github地址:https://github.com/bojone/accum_optimizer_for_keras
扯淡
在一两年之前,做NLP任务都不用怎么担心OOM问题,因为相比CV领域的模型,其实大多数NLP模型都是很浅的,极少会显存不足。幸运或者不幸的是,Bert出世了,然后火了。Bert及其后来者们(GPT-2、XLNET等)都是以足够庞大的Transformer模型为基础,通过足够多的语料预训练模型,然后通过fine tune的方式来完成特定的NLP任务。
你跳绳的时候,想过绳子的形状曲线是怎样的吗?
By 苏剑林 | 2019-07-06 | 50148位读者 | 引用基于Bert的NL2SQL模型:一个简明的Baseline
By 苏剑林 | 2019-06-29 | 142656位读者 | 引用在之前的文章《当Bert遇上Keras:这可能是Bert最简单的打开姿势》中,我们介绍了基于微调Bert的三个NLP例子,算是体验了一把Bert的强大和Keras的便捷。而在这篇文章中,我们再添一个例子:基于Bert的NL2SQL模型。
NL2SQL的NL也就是Natural Language,所以NL2SQL的意思就是“自然语言转SQL语句”,近年来也颇多研究,它算是人工智能领域中比较实用的一个任务。而笔者做这个模型的契机,则是今年我司举办的首届“中文NL2SQL挑战赛”:
首届中文NL2SQL挑战赛,使用金融以及通用领域的表格数据作为数据源,提供在此基础上标注的自然语言与SQL语句的匹配对,希望选手可以利用数据训练出可以准确转换自然语言到SQL的模型。
这个NL2SQL比赛算是今年比较大型的NLP赛事了,赛前投入了颇多人力物力进行宣传推广,比赛的奖金也颇丰富,唯一的问题是NL2SQL本身算是偏冷门的研究领域,所以注定不会太火爆,为此主办方也放出了一个Baseline,基于Pytorch写的,希望能降低大家的入门难度。
抱着“Baseline怎么能少得了Keras版”的心态,我抽时间自己用Keras做了做这个比赛,为了简化模型并且提升效果也加载了预训练的Bert模型,最终形成此文。
VQ-VAE的简明介绍:量子化自编码器
By 苏剑林 | 2019-06-24 | 325055位读者 | 引用简述无偏估计和有偏估计
By 苏剑林 | 2019-06-19 | 82361位读者 | 引用对于大多数读者(包括笔者)来说,他们接触到的第一个有偏估计量,应该是方差
\begin{equation}\hat{\sigma}^2_{\text{有偏}} = \frac{1}{n}\sum_{i=1}^n \left(x_i - \hat{\mu}\right)^2,\quad \hat{\mu} = \frac{1}{n}\sum_{i=1}^n x_i\label{eq:youpianfangcha}\end{equation}
然后又了解到对应的无偏估计应该是
\begin{equation}\hat{\sigma}^2_{\text{无偏}} = \frac{1}{n-1}\sum_{i=1}^n \left(x_i - \hat{\mu}\right)^2\label{eq:wupianfangcha}\end{equation}
在很多人的眼里,公式$\eqref{eq:youpianfangcha}$才是合理的,怎么就有偏了?公式$\eqref{eq:wupianfangcha}$将$n$换成反直觉的$n-1$,反而就无偏了?
下面试图用尽量清晰的语言讨论一下无偏估计和有偏估计两个概念。
当Bert遇上Keras:这可能是Bert最简单的打开姿势
By 苏剑林 | 2019-06-18 | 426327位读者 | 引用Bert是什么,估计也不用笔者来诸多介绍了。虽然笔者不是很喜欢Bert,但不得不说,Bert确实在NLP界引起了一阵轩然大波。现在不管是中文还是英文,关于Bert的科普和解读已经满天飞了,隐隐已经超过了当年Word2Vec刚出来的势头了。有意思的是,Bert是Google搞出来的,当年的word2vec也是Google搞出来的,不管你用哪个,都是在跟着Google大佬的屁股跑啊~
Bert刚出来不久,就有读者建议我写个解读,但我终究还是没有写。一来,Bert的解读已经不少了,二来其实Bert也就是基于Attention的搞出来的大规模语料预训练的模型,本身在技术上不算什么创新,而关于Google的Attention我已经写过解读了,所以就提不起劲来写了。
总的来说,我个人对Bert一直也没啥兴趣,直到上个月末在做信息抽取比赛时,才首次尝试了Bert。因为后来想到,即使不感兴趣,终究也是得学会它,毕竟用不用是一回事,会不会又是另一回事。再加上在Keras中使用(fine tune)Bert,似乎还没有什么文章介绍,所以就分享一下自己的使用经验。
最近评论