最近的那些事儿...
By 苏剑林 | 2011-07-05 | 15389位读者 | 引用只要我们曾经拥有过——《萍聚》
By 苏剑林 | 2011-06-06 | 21829位读者 | 引用这首歌是凤儿介绍的,去年我们学校高一夏令营的“主题歌曲”。她说歌词写得很好,我感觉也挺不错的^_^
萍,指的是漂浮在水面上的一种藻类,风吹过来,它们就会在风的作用力下聚在一起。人好象是浮在水面上的荷叶,聚散不过都是风吹动所致,到处飘散而已。因此便有了“萍水相逢”这一成语,指的是无心的邂逅或偶然的相遇。“萍聚”亦然。
曾有宋词写道“风中柳絮水中萍,聚散两无情”,这便让我们倍感人生悲欢离合的无奈。在这个充斥着高考的离别的六月里,离愁味道更浓了。可是,不论如何,明天的事情与我们无关,我们要珍惜今天事,珍惜今天人,尽我所能把握好我所拥有的。正如——
Cherish someone special for you and let them know you cherish them.
这样,当我们真的面临无可奈何的离别时,也能够含泪而微笑地挥手,唱着“只要我们曾经拥有过...”。这就是《萍聚》的声音!
本月的天象预报暂停...
By 苏剑林 | 2011-05-07 | 15212位读者 | 引用看完了刘亦菲版《倩女幽魂》
By 苏剑林 | 2011-04-23 | 31441位读者 | 引用自《仙剑奇侠传1》开始,BoJone一直都有追看刘亦菲和胡歌的影视作品,尤其是古装片。胡歌版的《神雕英雄传》、《仙剑奇侠传3》连续剧分别只花了4天时间就把它们看完了(有点狂...),还有他的《神话》等。至于刘亦菲,在我的印象里她这两年没有拍过古装片了,上一部好像就是《功夫之王》了,不过这部电影我不大喜欢(有点看不懂...)。不过刘亦菲的几部古装连续剧,如《神雕侠侣》、《天龙八部》还有《仙剑奇侠传1》中的“神仙姐姐”形象颇让人深刻,也许这正是她的清纯气质吧。
我记得去年就在广州日报上看到新版《倩女幽魂》的拍摄消息了,一直都有关注其拍摄进度。好像是在本月初就定下4月22日公映了,但事实上提前公映了。据说影迷本对这部影片不抱太大希望,但是上映后人们大都改观了,好评很多,票房也一路飙升。
其实BoJone是不懂得去欣赏一部电影的。只要影片中的情节不是特别地烂,我都觉得影片不错。看了这句话,一些资深影迷基本可以忽略我了,因为本文几乎没有什么可参考的价值。^_^
《教材如何写》:BoJone的粗浅看法
By 苏剑林 | 2011-04-19 | 21324位读者 | 引用在科学空间所转载的上两篇文章中,matrix67和范翔都表达了他们对大多数现行(数学&物理)教材的不满和对编写教材的一些建议。今天,BoJone也来发发牢骚,说说教材。
首先得说明下,目前BoJone只是一个高二生,或者说,是一个爱好数学、物理的高中生,因此本文所描写的观点仅仅是个人的看法,而且应该带有诸多的不成熟看法。不论如何,谨在此提出,欢迎讨论。
BoJone认为,人类都有着追求利益的倾向,要是一样东西能够对我们有“好处”,给我们带来方便,那么我们就很乐意去拥有它,或者去学习它。数学、物理理论也应当如此,当教材编写者想要引入一个新概念或介绍一个新理论、方法时,首先要做的并不是如何从严格上定义、推导、证明、最后才去应用,而相反,他们应该要大书特书引入新概念和方法后有什么“好处”。只有了解到了它的用处之后,读者才会有明确的目的和足够的心思去进一步的学习。这一步对于一些抽象的理论的学习是很重要的,要不然,那么繁琐、枯燥的推理证明过程会抹杀掉绝大多数人的信心,纵使后来“终于”弄懂了它的用处,也兴趣倍减。说到这里,就不得不批评一下人教版数学选修教材中的一个很让人反感的做法,在《选修2-2》中它引入了复数,但仅仅简单交待了复数的加减乘除运算和模等定义后就了事,对于复数的一些精华,比如复数乘法代表着坐标旋转等,则全然不提,这样的“复数”有何意义呢?有同学问我:“学复数有什么用?”我只能回答:“就目前来说,复数的唯一作用就是增加了我们高考的负担。”
《教材如何写》:对于教材写法的一点考虑
By 苏剑林 | 2011-04-16 | 23730位读者 | 引用转载自:eaglefantasy.com
有感于Matrix67神牛的这篇文章(强烈建议大家去读一读),我也发表一下自己对于教材编写的一点看法。
1.对线性代数的吐槽
(没学过线性代数的同学请忽略下面3段往后接着看。)
我一直觉得线性代数用那种严格公理化的语言写成课本根本不适合初学者学习,一开始学习线性代数的时候,我本人对很多概念的直观意义根本就是完全不知道。我们的课本是丘维声的《简明线性代数》,我在此毫不掩饰的表示对这本教材的鄙视:这本教材居然是按照这样的顺序讲线性代数的:线性方程组->行列式->线性方程组的进一步讨论->矩阵的运算->一大堆东西->线性空间->线性映射->一大堆东西。这个狗屁顺序直接导致我前半个学期一直以为线性代数就是研究怎么解线性方程组的,我心想,这么简单的问题,具体问题谁都会解,值得这么大动干戈的定义出这么大堆东西么。。。一直到线性空间那一个章节以前,我完全就不知道线性代数整个是在干什么..后来学的多了我才知道,其实线性代数就是研究线性空间和线性映射的嘛,什么线性方程组,根本没那么重要。一个更加合理的顺序是:先讲线性空间、线性映射,其中明确说明矩阵就是线性映射,然后再讲行列式,然后线性方程组只作为一个例子出现就可以了。
《教材如何写》:我们需要怎样的数学教育?
By 苏剑林 | 2011-04-16 | 67795位读者 | 引用转载自:matrix67.com
注:这篇文章里有很多个人观点,带有极强的主观色彩。其中一些思想不见得是正确的,有一些话也是我没有资格说的。我只是想和大家分享一下自己的一些想法。大家记得保留自己的见解。也请大家转载时保留这段话。
我不是一个数学家。我甚至连数学专业的人都不是。我是一个纯粹打酱油的数学爱好者,只是比一般的爱好者更加执着,更加疯狂罢了。初中、高中一路保送,大学不在数学专业,这让我可以不以考试为目的地学习自己感兴趣的数学知识,让我对数学有如此浓厚的兴趣。从 05 年建立这个 Blog 以来,每看到一个惊人的结论或者美妙的证明,我再忙都会花时间把它记录下来,生怕自己忘掉。不过,我深知,这些令人拍案叫绝的雕虫小技其实根本谈不上数学之美,数学真正博大精深的思想我恐怕还不曾有半点体会。
我多次跟人说起,我的人生理想就是,希望有一天能学完数学中的各个分支,然后站在一个至高点,俯瞰整个数学领域,真正体会到数学之美。但是,想要实现这一点是很困难的。最大的困难就是缺少一个学习数学的途径。看课本?这就是我今天想说的——课本极其不靠谱。
最近评论