28 Mar

分享:用LaTeX+MathJax画一个三维三阶环方

昨天看到数学研发论坛在讨论三维三阶幻方,论坛里的各大牛都已经讨论得差不多了,我也没什么好插话的。然后突发奇想,能不能用纯LaTeX画出一个这样的立体幻方出来?

昨天下午折腾了好一会儿,最后只抛出了个半成品,然后经过论坛的mathe大佬继续完善后,终于成功地画出来了:
$$\begin{array}{ccccccccccc}
& & & & 4 & —& —& — & — & 25 & —& —& — & — & 11
\\
& & & \require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & && &\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} && &&\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} &|
\\
& & 14 & — & — & —& — & 22 & — & — & — & —& 7 & & |
\\
& \require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}& &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & &\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}&&\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} & | & & | \\
24 & — & —& —& — & 1 & —& —& — & — & 18 & & | & & |\\
|& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & &\color{red}{13} &| & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} &\color{red}{27} & | & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & | &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&5\\
|& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & \require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & | & & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} &| & & |&\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} &|\\
|& & \color{red}{8} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}& | &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \color{red}{12} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}& | &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&22&&|\\
|&\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & | &\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}& | &\require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|} & | &&|\\
15 & — & —& —& — & 3 & — & — & —& —& 21 & & | & &|\\
|& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & & \color{red}{9} &| &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \color{red}{26} &|&\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&|&\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&6\\
|& & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}}&\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} & &| & &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\vdots}} &\require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &&|&&|&\style{display: inline-block; transform: rotate(45deg)}{|}\\
|& &\color{red}{16} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}} &|&\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}& \color{red}{8} &\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&\require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}& | & \require{HTML} \style{display: inline-block; opacity:0.5;}{\color{red}{\cdots}}&17\\
|& \require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}}& & & &|& \require{HTML} \style{display: inline-block; transform: rotate(45deg); opacity:0.5;}{\color{red}{\vdots}} &&&& | & \require{HTML} \style{display: inline-block; transform: rotate(45deg)}{|}\\
23 & — & — & — & — & 2 & — & — & — & — & 19\\
\end{array}$$

事实上代码里边还内嵌了一些HTML代码,所以不算是严格的纯LaTeX代码,应该说是LaTeX+MathJax的结合。

28 Oct

朋友们,来瓶汽水吧!有趣的换汽水问题

————怀念我曾经参加过的小学数学竞赛。

从一道小学竞赛题谈起

笔者小学五年级时参加了第一次数学竞赛,叫“育苗杯”,大多数题目都记不清楚了,唯一记得很清楚的是如下这道题目(不完全相同,意思类似):

假设汽水一块钱一瓶,而且4个空瓶子可以换一瓶汽水喝。如果我有30块钱,我最多可以喝到多少瓶汽水?

来瓶汽水吧

来瓶汽水吧

当然,上面的情况可能太理想了,但是必须承认,类似的案例在生活中大量存在。比如买草龟吃时,草龟壳由于可以入药,所以有人回收龟壳,这也意味着若干个龟壳就可以换一只龟,等等。读者能不能很快就算出来呢?

当然,这道题并不困难,30块钱能买30瓶汽水,然后留下30个空瓶子,这30个空瓶子可以换来7瓶汽水,剩下2个空瓶子;喝完汽水后,剩下9个空瓶子,可以换来2瓶汽水,剩下1个空瓶子;喝完汽水后,剩下3个空瓶子。算算看,这时候我们已经喝了30+7+2=39瓶汽水了。(不考虑撑着啊,也可以分给别人喝^_^)整个过程如下表:
$$\begin{array}{c|cccc}
\hline
\text{空瓶子数} & 30 & 2+7 & 1+2 & ? \\
\hline
\text{已喝汽水数} & 30 & 7 & 2 & ? \\
\hline \end{array}$$

点击阅读全文...

4 May

[问题解答]运煤车的最大路程(更正)

刚刚在浏览卢昌海大师的微博时,发现他微博上有一道比较有趣的题目,于是饶有兴致地思考了一翻,构思了一个答案,希望读者们看看这个答案有问题不?

五一”长假微博很闷,出一道题给博友们解闷:

用重载列车运煤,每次可装1万吨,每行驶1公里耗煤1吨,起点处共有N万吨煤(简单起见N为正整数),请问最远可运至何处(是国营煤老板,成本不计,只要运到的数量大于0就算成功)?并求$N\to\infty$时的渐进形式。

点击阅读全文...

9 Apr

趣题:与橡皮绳赛跑的蚂蚁

这是一道流传很广的趣题,也许不少读者已经听说过它,然而广为人知却不一定“广为人‘解’”,在此把题目给出来,写下我自己的答案,并且谈谈我对答案的看法。题目是这样子的:

与橡皮绳赛跑的蚂蚁
一只蚂蚁沿着一条长$l=100$米的橡皮绳以每秒1厘米的匀速由一端向另一端爬行。每过1秒钟,橡皮绳就拉长100米,比如10秒后,橡皮绳就伸长了1000米。假设橡皮绳可以任意拉长,并且拉伸是均匀的。蚂蚁也会不知疲倦的一直往前爬,在绳子均匀拉长时,蚂蚁的位置理所当然的相对匀速向前挪动,问,如此下去,蚂蚁能否最终爬到橡皮绳的另一端?

点击阅读全文...

2 Dec

相对运动的一道妙题!

这是在《200道物理学难题》中的第五道题,题目看起来没有什么特色,但是解法却非常巧妙:

四只蜗牛在做匀速直线运动(速度各不同),它们的运动轨迹是两两相交的直线,但是没有三条直线交于一点,也就是说他们的轨迹有六个交点。在它们之间,已经发生了五次相遇,问第六次相遇是否一定发生?换句话说,有没有可能只发生五次相遇的?

点击阅读全文...

29 Jul

生活中的趣味数学:同一天生日概率有多大

新浪科技讯 北京时间7月28日消息,据国外媒体报道,数学经常会让聪明人感觉自己笨得不行,有时甚至会让他们很生气。

事实上,数学本身非常有趣,它是我们日常生活的一部分,每个人都能从中获得享受。只不过在课堂上,数学被一些死板的老师教死板了。以下就是英国《每日邮报》最近公布的日常生活中的趣味数学:

你身上的计算器

从左到右给你的手指编

从左到右给你的手指编

点击阅读全文...

8 Jul

科学空间:一种有趣的平方数

数字是美丽的、极具魅力的,正如——
有这样的一种数,将其拆开成为两个数,这两个数的和的平方等于原数。例如:
$$\begin{aligned}2025=&(20+25)^2\\88209=&(88+209)^2\\152344237969=&(152344+237969)^2\\ &...\end{aligned}$$

下面是关于这类数的一些研究:

1、这类数的实质是:$(A+B)^2=10^nA+B$,而对于$(A+B)^2=kA+B$,有
$A=k/2-B\pm\sqrt{{k^2}/{4}-(k-1)B}$
因此,一般地,对于一个适合的B,可以找到两个对应的A。

点击阅读全文...