从对称角度看代数方程
By 苏剑林 | 2011-04-29 | 26466位读者 | 引用这些日子来,BoJone迷上了两个东西:最小作用量和对称。这两个“东西”在物理学中几乎占据着最重要的地位,前边已经说过,通过最小作用量原理能够构建起当代整个物理学的框架,体现着自然界的“经济头脑”;后者则是守恒的体现,也对应着自然界的“美感”。本文主要是从最简单的层面谈谈对称。
对称的东西很重要,很美。当然,这里所指的是数学上的对称。数学上有很多问题都可以列出对称的式子,而且由于其对称性,因此求解过程一般比不对称的式子简单不少。据说,当代最前沿的物理学框架都是用群论描述的(包括广义相对论),而群论正是用来研究对称的有力工具,可见,对称和对称的方法在实际中有着广泛的应用。(当然本文不讨论群论,关键是BoJone也不懂群论...^_^)
我们先来看二次方程,根据韦达定理,二次方程都可以表达成下面的形式:
$$\begin{aligned}x_1+x_2=a \\ x_1 x_2=b\end{aligned}$$
这是一个多对称的形式!这里的对称体现在将$x_1,x_2$互相替换后方程形式依然不变。如果我们设$x_1=y_1+y_2,x_2=y_1-y_2$,就可以变成
$$2y_1=a,y_1^2-y_2^2=b$$
这样很快就求出$y_1,y_2$了,继而能够求出方程的两个根。
《方程与宇宙》:一种有趣的三体问题坐标
By 苏剑林 | 2011-02-19 | 23499位读者 | 引用通常来说,选取惯性系为参考系,列出的三体问题方程为
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}$$
历史上出现过很多不同形式的变换,使得三体问题的运动方程有了各样的形式,如Lagrange形式、Jacobi形式、Hamilton形式等。这些变换形式都各有特点,都能够在一定程度上化简三体问题。BoJone在研究摆弄等质量型三体问题的运动方程时,也发现了一种很有趣的变换,在此贴出与大家分享。
设$\vec{R}_1=\vec{r}_1-\vec{r}_2,\vec{R}_2=\vec{r}_2-\vec{r}_3,\vec{R}_3=\vec{r}_3-\vec{r}_1$,则三体问题的运动方程变为
《方程与宇宙》:三体问题和它的初积分(六)
By 苏剑林 | 2011-01-20 | 63691位读者 | 引用The Three Body Problem and its Classical Integration
很多天文爱好者都已经接触到了“二体问题”(我们在高中学习到的“开普勒三定律”就是内容之一),由于在太阳系中行星质量相对较小而且距离相对较远,应用“二体问题”的解对天体进行计算、预报等能够满足一定的近似需求。不过,如果需要更高精度的计算,就不能把其他行星的引力给忽略掉了,于是就产生了所谓N体问题(N-Body Problem),即N个质点尽在它们各自引力的相互作用下的运动规律问题。最简单的二体已经被彻底解决,而三体或更多体的问题则与二体大相径庭,因为庞加莱证明了,三体问题不能严格求解,而且这是一个混沌系统,任何微小的扰动都会造成不可预期的效果。
根据牛顿力学,选择惯性参考系,设三个质点分别为$M_1,M_2,M_3$,向径分别为$\vec{r_1},\vec{r_2},\vec{r_3}$,可以列出运动方程(以下的导数都默认是对时间t求导)
《方程与宇宙》:拉格朗日点,复数,向量(五)
By 苏剑林 | 2010-08-16 | 52587位读者 | 引用The New Calculation Of Lagrangian Point 4,5
上一回我们已经求出了拉格朗日点L1,L2,L3,并且希望能够求出L4,L5两个点。由于L4,L5与“地球-太阳”连线已经不共线了,所以前边的方法貌似不能够用了。为了得到一个通用的定义,我们可以采用以下方法来描述拉格朗日点:位于拉格朗日点的天体,它与太阳的连线以及地球与太阳的连线所组成的角的大小是恒定的。(这里为了方便,采用了地日系的拉格朗日点来描述,对于一般的三体问题是一样的)
对于L4,L5来说,我们或许可以设置一个新的向量来描述这两点的向径(如$\vec{R}$)。当我们这样做后,很快就会发现这样会令我们的计算走向死胡同。因为我们发现:已知两个向量的夹角和其中一个向量,我们很难把另一个向量用已知向量的式子表达出来。不能做到这一点,就不能找出$\vec{R}$与$\vec{r}$的关系,就无法联立方程求解。难道,我们这一条路走到尽头了吗?一开始BoJone也冥思苦想不得头绪,但是...
《方程与宇宙》:拉格朗日点的点点滴滴(四)
By 苏剑林 | 2010-08-15 | 93969位读者 | 引用The New Calculation Of Lagrangian Point 1,2,3
关于n体问题,选择质心或其他定点为参考点,我们可以列出下面的运动方程:
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}\tag{19}$$
现在我们只考虑三体问题。天文学家一直希望能够找到三体问题的简洁解,可是很遗憾,庞加莱已经证明了三体问题的解是混沌的,也就是说任何微小的扰动都有可能造成不可预料的后果(可以形象的比喻为:巴西的一只蝴蝶翅膀的扇动,有可能因此美国的一场龙卷风)。
三次方程求根器(VB程序+源码,“低手”拙作)
By 苏剑林 | 2010-08-09 | 33504位读者 | 引用三次方程的三角函数解法
By 苏剑林 | 2010-08-08 | 86267位读者 | 引用对于解方程,代数学家希望能够从理论上证明解的存在性以及解的求法,所以就有了1到4次方程的求根公式、5次及以上的代数方程没有根式可解等重要理论;然而,通常的学者(如物理学家、天文学家)都不需要这些内容,他们只关心如何尽可能快地求出指定方程的根(尤其是实数根),所以他们通常关注的是方程的数值算法,当然,如果能有一个相对简单的求根公式,也是他们所希望的。而接下来所要介绍的内容,则是满足了这一需要的三次方程的求根公式,其中用到的相当一部分的理论,是与三角函数相关的。
储备
\begin{equation}\frac{2}{\tan 2A}=\frac{1}{\tan A}-\tan A\end{equation}
\begin{equation}\frac{2}{\sin 2A}=\frac{1}{\tan A}+\tan A\end{equation}
\begin{equation}\cos(3A)=4\cos^3 A-3\cos A\end{equation}
最近评论