生成扩散模型漫谈(二十八):分步理解一致性模型
By 苏剑林 | 2024-12-18 | 11189位读者 | 引用书接上文,在《生成扩散模型漫谈(二十七):将步长作为条件输入》中,我们介绍了加速采样的Shortcut模型,其对比的模型之一就是“一致性模型(Consistency Models)”。事实上,早在《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》介绍ReFlow时,就有读者提到了一致性模型,但笔者总感觉它更像是实践上的Trick,理论方面略显单薄,所以兴趣寥寥。
不过,既然我们开始关注扩散模型加速采样方面的进展,那么一致性模型就是一个绕不开的工作。因此,趁着这个机会,笔者在这里分享一下自己对一致性模型的理解。
熟悉配方
还是熟悉的配方,我们的出发点依旧是ReFlow,因为它大概是ODE式扩散最简单的理解方式。设$\boldsymbol{x}_0\sim p_0(\boldsymbol{x}_0)$是目标分布的真实样本,$\boldsymbol{x}_1\sim p_1(\boldsymbol{x}_1)$是先验分布的随机噪声,$\boldsymbol{x}_t = (1-t)\boldsymbol{x}_0 + t\boldsymbol{x}_1$是加噪样本,那么ReFlow的训练目标是:
生成扩散模型漫谈(二十七):将步长作为条件输入
By 苏剑林 | 2024-12-15 | 11400位读者 | 引用这篇文章我们再次聚焦于扩散模型的采样加速。众所周知,扩散模型的采样加速主要有两种思路,一是开发更高效的求解器,二是事后蒸馏。然而,据笔者观察,除了上两篇文章介绍过的SiD外,这两种方案都鲜有能将生成步数降低到一步的结果。虽然SiD能做到单步生成,但它需要额外的蒸馏成本,并且蒸馏过程中用到了类似GAN的交替训练过程,总让人感觉差点意思。
本文要介绍的是《One Step Diffusion via Shortcut Models》,其突破性思想是将生成步长也作为扩散模型的条件输入,然后往训练目标中加入了一个直观的正则项,这样就能直接稳定训练出可以单步生成模型,可谓简单有效的经典之作。
ODE扩散
原论文的结论是基于ODE式扩散模型的,而对于ODE式扩散的理论基础,我们在本系列的(六)、(十二)、(十四)、(十五)、(十七)等博客中已经多次介绍,其中最简单的一种理解方式大概是(十七)中的ReFlow视角,下面我们简单重复一下。
重温SSM(一):线性系统和HiPPO矩阵
By 苏剑林 | 2024-05-24 | 50801位读者 | 引用前几天,笔者看了几篇介绍SSM(State Space Model)的文章,才发现原来自己从未认真了解过SSM,于是打算认真去学习一下SSM的相关内容,顺便开了这个新坑,记录一下学习所得。
SSM的概念由来已久,但这里我们特指深度学习中的SSM,一般认为其开篇之作是2021年的S4,不算太老,而SSM最新最火的变体大概是去年的Mamba。当然,当我们谈到SSM时,也可能泛指一切线性RNN模型,这样RWKV、RetNet还有此前我们在《Google新作试图“复活”RNN:RNN能否再次辉煌?》介绍过的LRU都可以归入此类。不少SSM变体致力于成为Transformer的竞争者,尽管笔者并不认为有完全替代的可能性,但SSM本身优雅的数学性质也值得学习一番。
尽管我们说SSM起源于S4,但在S4之前,SSM有一篇非常强大的奠基之作《HiPPO: Recurrent Memory with Optimal Polynomial Projections》(简称HiPPO),所以本文从HiPPO开始说起。
生成扩散模型漫谈(二十四):少走捷径,更快到达
By 苏剑林 | 2024-04-23 | 33414位读者 | 引用如何减少采样步数同时保证生成质量,是扩散模型应用层面的一个关键问题。其中,《生成扩散模型漫谈(四):DDIM = 高观点DDPM》介绍的DDIM可谓是加速采样的第一次尝试。后来,《生成扩散模型漫谈(五):一般框架之SDE篇》、《生成扩散模型漫谈(五):一般框架之ODE篇》等所介绍的工作将扩散模型与SDE、ODE联系了起来,于是相应的数值积分技术也被直接用于扩散模型的采样加速,其中又以相对简单的ODE加速技术最为丰富,我们在《生成扩散模型漫谈(二十一):中值定理加速ODE采样》也介绍过一例。
这篇文章我们介绍另一个特别简单有效的加速技巧——Skip Tuning,出自论文《The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling》,准确来说它是配合已有的加速技巧使用,来一步提高采样质量,这就意味着在保持相同采样质量的情况下,它可以进一步压缩采样步数,从而实现加速。
生成扩散模型漫谈(二十一):中值定理加速ODE采样
By 苏剑林 | 2023-12-07 | 80351位读者 | 引用在生成扩散模型的发展史上,DDIM和同期Song Yang的扩散SDE都称得上是里程碑式的工作,因为它们建立起了扩散模型与随机微分方程(SDE)、常微分方程(ODE)这两个数学领域的紧密联系,从而允许我们可以利用SDE、ODE已有的各种数学工具来对分析、求解和拓展扩散模型,比如后续大量的加速采样工作都以此为基础,可以说这打开了生成扩散模型的一个全新视角。
本文我们聚焦于ODE。在本系列的(六)、(十二)、(十四)、(十五)、(十七)等博客中,我们已经推导过ODE与扩散模型的联系,本文则对扩散ODE的采样加速做简单介绍,并重点介绍一种巧妙地利用“中值定理”思想的新颖采样加速方案“AMED”。
欧拉方法
正如前面所说,我们已经有多篇文章推导过扩散模型与ODE的联系,所以这里不重复介绍,而是直接将扩散ODE的采样定义为如下ODE的求解:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt} = \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\label{eq:dm-ode}\end{equation}
生成扩散模型漫谈(十七):构建ODE的一般步骤(下)
By 苏剑林 | 2023-02-23 | 85273位读者 | 引用历史总是惊人地相似。当初笔者在写《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀)时,以为自己已经搞清楚了构建ODE式扩散的一般步骤,结果读者 @gaohuazuo 就给出了一个新的直观有效的方案,这直接导致了后续《生成扩散模型漫谈(十四):构建ODE的一般步骤(中)》(当时后缀是“下”)。而当笔者以为事情已经终结时,却发现ICLR2023的论文《Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow》又给出了一个构建ODE式扩散模型的新方案,其简洁、直观的程度简直前所未有,令人拍案叫绝。所以笔者只好默默将前一篇的后缀改为“中”,然后写了这个“下”篇来分享这一新的结果。
直观结果
我们知道,扩散模型是一个$\boldsymbol{x}_T\to \boldsymbol{x}_0$的演化过程,而ODE式扩散模型则指定演化过程按照如下ODE进行:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}
而所谓构建ODE式扩散模型,就是要设计一个函数$\boldsymbol{f}_t(\boldsymbol{x}_t)$,使其对应的演化轨迹构成给定分布$p_T(\boldsymbol{x}_T)$、$p_0(\boldsymbol{x}_0)$之间的一个变换。说白了,我们希望从$p_T(\boldsymbol{x}_T)$中随机采样一个$\boldsymbol{x}_T$,然后按照上述ODE向后演化得到的$\boldsymbol{x}_0$是$\sim p_0(\boldsymbol{x}_0)$的。
生成扩散模型漫谈(十六):W距离 ≤ 得分匹配
By 苏剑林 | 2023-02-14 | 24920位读者 | 引用Wasserstein距离(下面简称“W距离”),是基于最优传输思想来度量两个概率分布差异程度的距离函数,笔者之前在《从Wasserstein距离、对偶理论到WGAN》等博文中也做过介绍。对于很多读者来说,第一次听说W距离,是因为2017年出世的WGAN,它开创了从最优传输视角来理解GAN的新分支,也提高了最优传输理论在机器学习中的地位。很长一段时间以来,GAN都是生成模型领域的“主力军”,直到最近这两年扩散模型异军突起,GAN的风头才有所下降,但其本身仍不失为一个强大的生成模型。
从形式上来看,扩散模型和GAN差异很明显,所以其研究一直都相对独立。不过,去年底的一篇论文《Score-based Generative Modeling Secretly Minimizes the Wasserstein Distance》打破了这个隔阂:它证明了扩散模型的得分匹配损失可以写成W距离的上界形式。这意味着在某种程度上,最小化扩散模型的损失函数,实则跟WGAN一样,都是在最小化两个分布的W距离。
测试函数法推导连续性方程和Fokker-Planck方程
By 苏剑林 | 2023-02-11 | 36882位读者 | 引用在文章《生成扩散模型漫谈(六):一般框架之ODE篇》中,我们推导了SDE的Fokker-Planck方程;而在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》中,我们单独推导了ODE的连续性方程。它们都是描述随机变量沿着SDE/ODE演化的分布变化方程,连续性方程是Fokker-Planck方程的特例。在推导Fokker-Planck方程时,我们将泰勒展开硬套到了狄拉克函数上,虽然结果是对的,但未免有点不伦不类;在推导连续性方程时,我们结合了雅可比行列式和泰勒展开,方法本身比较常规,但没法用来推广到Fokker-Planck方程。
这篇文章我们介绍“测试函数法”,它是推导连续性方程和Fokker-Planck方程的标准方法之一,其分析过程比较正规,并且适用场景也比较广。
最近评论