通过互信息思想来缓解类别不平衡问题
By 苏剑林 | 2020-07-19 | 164330位读者 | 引用类别不平衡问题,也叫“长尾问题”,是机器学习面临的常见问题之一,尤其是来源于真实场景下的数据集,几乎都是类别不平衡的。大概在两年前,笔者也思考过这个问题,当时正好对“互信息”相关的内容颇有心得,所以构思了一种基于互信息思想的解决办法,但又想了一下,那思路似乎过于平凡,所以就没有深究。然而,前几天在arxiv上刷到Google的一篇文章《Long-tail learning via logit adjustment》,意外地发现里边包含了跟笔者当初的构思几乎一样的方法,这才意识到当初放弃的思路原来还能达到SOTA的水平~于是结合这篇论文,将笔者当初的构思过程整理于此,希望不会被读者嫌弃“马后炮”。
问题描述
这里主要关心的是单标签的多分类问题,假设有$1,2,\cdots,K$共$K$个候选类别,训练数据为$(x,y)\sim\mathcal{D}$,建模的分布为$p_{\theta}(y|x)$,那么我们的优化目标是最大似然,或者说最小化交叉熵,即
\begin{equation}\mathop{\text{argmin}}_{\theta}\,\mathbb{E}_{(x,y)\sim\mathcal{D}}[-\log p_{\theta}(y|x)]\end{equation}
HSIC简介:一个有意思的判断相关性的思路
By 苏剑林 | 2019-08-26 | 102258位读者 | 引用前几天,在机器之心看到这样的一个推送《彻底解决梯度爆炸问题,新方法不用反向传播也能训练ResNet》,当然,媒体的标题党作风我们暂且无视,主要看内容即可。机器之心的这篇文章,介绍的是论文《The HSIC Bottleneck: Deep Learning without Back-Propagation》的成果,里边提出了一种通过HSIC Bottleneck来训练神经网络的算法。
坦白说,这篇论文笔者还没有看明白,因为对笔者来说里边的新概念有点多了。不过论文中的“HSIC”这个概念引起了笔者的兴趣。经过学习,终于基本地理解了这个HSIC的含义和来龙去脉,于是就有了本文,试图给出HSIC的一个尽可能通俗(但可能不严谨)的理解。
背景
HSIC全称“Hilbert-Schmidt independence criterion”,中文可以叫做“希尔伯特-施密特独立性指标”吧,跟互信息一样,它也可以用来衡量两个变量之间的独立性。
从变分编码、信息瓶颈到正态分布:论遗忘的重要性
By 苏剑林 | 2018-11-27 | 161988位读者 | 引用这是一篇“散文”,我们来谈一下有着千丝万缕联系的三个东西:变分自编码器、信息瓶颈、正态分布。
众所周知,变分自编码器是一个很经典的生成模型,但实际上它有着超越生成模型的含义;而对于信息瓶颈,大家也许相对陌生一些,然而事实上信息瓶颈在去年也热闹了一阵子;至于正态分布,那就不用说了,它几乎跟所有机器学习领域都有或多或少的联系。
那么,当它们三个碰撞在一块时,又有什么样的故事可说呢?它们跟“遗忘”又有什么关系呢?
变分自编码器
在本博客你可以搜索到若干几篇介绍VAE的文章。下面简单回顾一下。
理论形式回顾
简单来说,VAE的优化目标是:
\begin{equation}KL(\tilde{p}(x)p(z|x)\Vert q(z)q(x|z))=\iint \tilde{p}(x)p(z|x)\log \frac{\tilde{p}(x)p(z|x)}{q(x|z)q(z)} dzdx\end{equation}
其中$q(z)$是标准正态分布,$p(z|x),q(x|z)$是条件正态分布,分别对应编码器、解码器。具体细节可以参考《变分自编码器(二):从贝叶斯观点出发》。
变分自编码器 = 最小化先验分布 + 最大化互信息
By 苏剑林 | 2018-10-10 | 128455位读者 | 引用这篇文章很简短,主要描述的是一个很有用、也不复杂、但是我居然这么久才发现的事实~
在《深度学习的互信息:无监督提取特征》一文中,我们通过先验分布和最大化互信息两个loss的加权组合来得到Deep INFOMAX模型最后的loss。在那篇文章中,虽然把故事讲完了,但是某种意义上来说,那只是个拼凑的loss。而本文则要证明那个loss可以由变分自编码器自然地导出来。
过程
不厌其烦地重复一下,变分自编码器(VAE)需要优化的loss是
\begin{equation}\begin{aligned}&KL(\tilde{p}(x)p(z|x)\Vert q(z)q(x|z))\\
=&\iint \tilde{p}(x)p(z|x)\log \frac{\tilde{p}(x)p(z|x)}{q(x|z)q(z)} dzdx\end{aligned}\end{equation}
相关的论述在本博客已经出现多次了。VAE中既包含编码器,又包含解码器,如果我们只需要编码特征,那么再训练一个解码器就显得很累赘了。所以重点是怎么将解码器去掉。
其实再简单不过了,把VAE的loss分开两部分
深度学习的互信息:无监督提取特征
By 苏剑林 | 2018-10-02 | 283947位读者 | 引用对于NLP来说,互信息是一个非常重要的指标,它衡量了两个东西的本质相关性。本博客中也多次讨论过互信息,而我也对各种利用互信息的文章颇感兴趣。前几天在机器之心上看到了最近提出来的Deep INFOMAX模型,用最大化互信息来对图像做无监督学习,自然也颇感兴趣,研读了一番,就得到了本文。
本文整体思路源于Deep INFOMAX的原始论文,但并没有照搬原始模型,而是按照这自己的想法改动了模型(主要是先验分布部分),并且会在相应的位置进行注明。
我们要做什么
自编码器
特征提取是无监督学习中很重要且很基本的一项任务,常见形式是训练一个编码器将原始数据集编码为一个固定长度的向量。自然地,我们对这个编码器的基本要求是:保留原始数据的(尽可能多的)重要信息。
我们怎么知道编码向量保留了重要信息呢?一个很自然的想法是这个编码向量应该也要能还原出原始图片出来,所以我们还训练一个解码器,试图重构原图片,最后的loss就是原始图片和重构图片的mse。这导致了标准的自编码器的设计。后来,我们还希望编码向量的分布尽量能接近高斯分布,这就导致了变分自编码器。
重构的思考
更别致的词向量模型(二):对语言进行建模
By 苏剑林 | 2017-11-19 | 55882位读者 | 引用从条件概率到互信息
目前,词向量模型的原理基本都是词的上下文的分布可以揭示这个词的语义,就好比“看看你跟什么样的人交往,就知道你是什么样的人”,所以词向量模型的核心就是对上下文的关系进行建模。除了glove之外,几乎所有词向量模型都是在对条件概率$P(w|context)$进行建模,比如Word2Vec的skip gram模型就是对条件概率$P(w_2|w_1)$进行建模。但这个量其实是有些缺点的,首先它是不对称的,即$P(w_2|w_1)$不一定等于$P(w_1|w_2)$,这样我们在建模的时候,就要把上下文向量和目标向量区分开,它们不能在同一向量空间中;其次,它是有界的、归一化的量,这就意味着我们必须使用softmax等方法将它压缩归一,这造成了优化上的困难。
事实上,在NLP的世界里,有一个更加对称的量比单纯的$P(w_2|w_1)$更为重要,那就是
\[\frac{P(w_1,w_2)}{P(w_1)P(w_2)}=\frac{P(w_2|w_1)}{P(w_2)}\tag{1}\]
这个量的大概意思是“两个词真实碰面的概率是它们随机相遇的概率的多少倍”,如果它远远大于1,那么表明它们倾向于共同出现而不是随机组合的,当然如果它远远小于1,那就意味着它们俩是刻意回避对方的。这个量在NLP界是举足轻重的,我们暂且称它为“相关度“,当然,它的对数值更加出名,大名为点互信息(Pointwise Mutual Information,PMI):
\[\text{PMI}(w_1,w_2)=\log \frac{P(w_1,w_2)}{P(w_1)P(w_2)}\tag{2}\]
有了上面的理论基础,我们认为,如果能直接对相关度进行建模,会比直接对条件概率$P(w_2|w_1)$建模更加合理,所以本文就围绕这个角度进行展开。在此之前,我们先进一步展示一下互信息本身的美妙性质。
【不可思议的Word2Vec】 4.不一样的“相似”
By 苏剑林 | 2017-05-01 | 146045位读者 | 引用相似度的定义
当用Word2Vec得到词向量后,一般我们会用余弦相似度来比较两个词的相似程度,定义为
$$\cos (\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}\cdot\boldsymbol{y}}{|\boldsymbol{x}|\times|\boldsymbol{y}|}$$
有了这个相似度概念,我们既可以比较任意两个词之间的相似度,也可以找出跟给定词最相近的词语。这在gensim的Word2Vec中,由most_similar函数实现。
等等!我们很快给出了相似度的计算公式,可是我们居然还没有“定义”相似!连相似都没有定义,怎么就得到了评估相似度的数学公式了呢?
要注意,这不是一个可以随意忽略的问题。很多时候我们都不知道我们干的是什么,就直接去干了。好比上一篇文章说到提取关键词,相信很多人都未曾想过,什么是关键词,难道就仅仅说关键词就是很“关键”的词?而如果想到,关键词就是用来估计文章大概讲什么的,这样我们就得到一种很自然的关键词定义
$$keywords = \mathop{\text{argmax}}_{w\in s}p(s|w)$$
进而可以用各种方法对它建模。
回到本文的主题来,相似度怎么定义呢?答案是:看场景定义所需要的相似。
最近评论