费曼路径积分思想的发展(四)
By 苏剑林 | 2012-12-27 | 38814位读者 | 引用4、量子场论中的泛函方法
路径积分出现之初,大多数物理学家反映都很冷淡,甚至怀疑它的正确性。这一方面是对路径积分方法的陌生与误解所致。在泊珂淖会议上,玻尔就把费曼图误解成粒子运动的轨迹,并对之进行了尖锐的批评。([19],P.459)另一方面,费曼并没有用公理化的方法,从作用量或拉格朗日量出发系统地推导出费曼规则,他是靠经验、猜测、检验和比较来给出与各种图相应的规则的。尽管如此,费曼却能把他的方法推广到当时热门的介子理论,并且只需一个晚上就可解决他人用正则哈密顿方法要用几个月的时间才能解决的问题。费曼方法的有效性,使戴逊大为惊讶,并促使他相信路径积分“必定是根本上正确的”([1],P.54)理论。随之,戴逊便决定把“理解费曼(的思想)并用一种他人能理解的语言来加以阐述”([1],p.54)作为自己的主要工作。1948年,戴逊成功地证明了朝永振一朗、施温格和费曼三人的理论“在其共同适用领域内”[25]的等价性。费曼的粒子图像的路径积分方法由此改头换面,变成了场论形式的泛函积分方法。
又折腾数学公式插件了
By 苏剑林 | 2013-01-05 | 24509位读者 | 引用从2013.11.15开始,使用MathJax插件。主要原因是MathJax在兼容性方面比ASCIIMath Image Fallback Scripts做得好很多。而且从长远考虑,用MathJax也是应该的。
官方网站:http://www.mathjax.org/
复制数学公式:http://www.mathjax.org/demos/copy-and-paste/
-------以下内容已经过时(写于2013.01.05)--------
原来一直是使用“数学研发论坛”完善的数学公式插件来显示数学公式的,使用很简单,载入速度很快,这样一下子就用了三年了。
不过进入大学后,学习的东西越来越多,数学符号也越来越多,郭大哥的插件的不足也暴露出来了。最要命的是它居然无法显示$\hbar$,这叫我这个学习量子力学的孩子情何以堪...(不过郭大哥新版的插件已经加入了这个符号)。还有另外一个不足的地方,就是郭大哥的插件进行了大量的化简,使得数学公式的输入简单了不少,但是反而对标准的Latex代码支持不足了。久而久之,会带来一个弊端,就是迁移性不强。万一哪天这个插件无法使用了,就难以找到替代品了。考虑到这些,我写latex代码的时候总是用标准的语法而不用简化语法,后来$\hbar$的问题出来后,一下子用上了MathJax这个强大的插件(考虑过JsMath,但是发现它的行内公式显示效果不大好)。
这已经是去年写的稿件了,刊登在今年二月份的《天文爱好者》上,本文的标题还登载了该期天爱的封面上,当时甚是高兴呢!在此与大家分享、共勉。
相信许多天文爱好者都知道第一、第二、第三宇宙速度的概念,也会有不少的天爱自己动手计算过它们。我们道,只要发射速度达到7.9km/s,宇宙飞船就可以绕地球运行了;超过11.2km/s,就可以抛开地球,成为太阳系的一颗“人造行星”;再大一点,超过16.7km/s,那么就连太阳也甩掉了,直奔深空。
16.7km/s,咋看上去并不大,因为地球绕太阳运行的速度已经是30km/s了,这个速度在宇宙中实在是太普通了。但是对于我们目前的技术来说,它大得有点可怕。维基百科上的资料显示,史上最强劲的火箭土星五号在运送阿波罗11号到月球时,飞船最终也只能加速到接近逃逸速度,即11.2km/s,而事实上第三宇宙速度已经是是目前人造飞行器的速度极限了。可是没有速度,我们就不能发射探测器去探索深空,那些科幻小说中的“星际移民”,就永远只能停留在小说上了。
【翻译】星空之夜:夏季恒星的色彩
By 苏剑林 | 2013-07-25 | 32095位读者 | 引用[欧拉数学]找出严谨的答案
By 苏剑林 | 2013-09-09 | 19497位读者 | 引用在之前的一些文章中,我们已经谈到过欧拉数学。总体上来讲,欧拉数学就是具有创造性的、直觉性的技巧和方法,这些方法能够推导出一些漂亮的结果,而方法本身却并不严密。然而,在很多情况下,严密与直觉只是一步之遥。接下来要介绍的是我上学期《数学分析》期末考的一道试题,而我解答这道题的灵感来源便是“欧拉数学”。
数列${a_n}$是递增的正数列,求证:$\sum\limits_{n=1}^{\infty}\left(1-\frac{a_n}{a_{n+1}}\right)$收敛等价于${a_n}$收敛。
据说参考答案给出的方法是利用数列的柯西收敛准则,我也没有仔细去看,我在探索自己的更富有直觉型的方法。这就是所谓的“I do not understand what I can not create.”。下面是我的思路。
数学基本技艺之23、24(下)
By 苏剑林 | 2013-09-27 | 24322位读者 | 引用在上一篇文章中我们得到了第23题的解,本来想接着类似地求第24题,但是看着23题的答案,又好像发现了一些新的东西,故没有继续写下去。等到今天在课堂上花了一节课研究了一下之后,得到了关于这种拟齐次微分方程的一些新的结果,遂另开一篇新文章,与大家分享。
一、特殊拟齐次微分方程的通解
在上一篇文章中,我们求出了拟齐次微分方程$\frac{dy}{dx}=x+\frac{x^3}{y}$的解:
$$(2y+x^2)(x^2-y)^2=C$$
或者写成这样的形式:
$$(y+\frac{1}{2} x^2)(y-x^2)^2=C$$
不求珍馐百味,但愿开水白菜
By 苏剑林 | 2014-03-15 | 40703位读者 | 引用用PyPy提高Python脚本执行效率
By 苏剑林 | 2014-06-11 | 23490位读者 | 引用在《两百万前素数之和与前两百万素数之和》中,我们用Python求了前两百万的素数和以及两百万前的素数和,并且得到了在Python 3.3中的执行时间如下:
两百万前的素数之和:
142913828922
time: 2.4048174478605646前两百万的素数之和:
31381137530481
time: 46.75734807838953
于是想办法提高python脚本的执行效率,我觉得在算法方面,优化空间已经比较小了,于是考虑执行器上的优化。在搜索的无意间我看到了一个名词——Psyco!这是python的一个外部模块,导入后可以加快.py脚本的执行。网上也有《用 Psyco 让 Python 运行得像 C一样快》、《利用 psyco 让 Python 程序执行更快》之类的文章,说明Psyco确实是一个可行的选择,于是就跃跃欲试了,后来了解到Psyco在2012年已经停止开发,只支持到Python 2.4版本,目前它由 PyPy所接替。于是我就下载了PyPy。
最近评论