从JL引理看熵不变性Attention
By 苏剑林 | 2023-04-10 | 30016位读者 | 引用在《从熵不变性看Attention的Scale操作》、《熵不变性Softmax的一个快速推导》中笔者提出了熵不变性Softmax,简单来说就是往Softmax之前的Attention矩阵多乘上一个$\log n$,理论上有助于增强长度外推性,其中$n$是序列长度。$\log n$这个因子让笔者联系到了JL引理(Johnson-Lindenstrauss引理),因为JL引理告诉我们编码$n$个向量只需要$\mathcal{O}(\log n)$的维度就行了,大家都是$\log n$,这两者有没有什么关联呢?
熵不变性
我们知道,熵是不确定性的度量,用在注意力机制中,我们将它作为“集中注意力的程度”。所谓熵不变性,指的是不管序列长度$n$是多少,我们都要将注意力集中在关键的几个token上,而不要太过分散。为此,我们提出的熵不变性Attention形式为
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{\log_{512} n}{\sqrt{d}}QK^{\top}\right)V\label{eq:core}\end{equation}
基于量子化假设推导模型的尺度定律(Scaling Law)
By 苏剑林 | 2023-05-18 | 34853位读者 | 引用尺度定律(Scaling Law),指的是模型能力与模型尺度之间的渐近关系。具体来说,模型能力我们可以简单理解为模型的损失函数,模型尺度可以指模型参数量、训练数据量、训练步数等,所谓尺度定律,就是研究损失函数跟参数量、数据量、训练步数等变量的大致关系。《Scaling Laws for Neural Language Models》、《Training Compute-Optimal Large Language Models》等工作的实验结果表明,神经网络的尺度定律多数呈现“幂律(Power law)”的形式。
为什么会是幂律呢?能否从理论上解释呢?论文《The Quantization Model of Neural Scaling》基于“量子化”假设给出了一个颇为有趣的推导。本文一同来欣赏一下。
【生活杂记】炒锅的尽头是铁锅
By 苏剑林 | 2023-11-13 | 55194位读者 | 引用很多会下厨的同学估计都纠结过一件事情,那就是炒锅的选择。
对于炒锅的纠结,归根结底是不粘与方便的权衡。最简单的不粘锅自然是带涂层的不粘锅,如果家里的热源只有电磁炉,并且炒菜习惯比较温和,那么涂层不粘锅往往是最佳选择了。不过,一旦有了明火的燃气灶,又或者是比较喜欢爆炒,那么涂层锅可能就不是那么适合了,毕竟温度过高涂层总有脱落的风险,此时一般就考虑无涂层不粘锅。
无涂层不粘锅也有五花八门的选择,比如朴素的铁锅、带蜂窝纹的不锈钢锅、有钛锅、纯钛锅等等,价格大体上也单调递增。不过用到最后,我觉得大部分人都会回归到朴素的铁锅。
随机分词再探:从Viterbi Sampling到完美采样算法
By 苏剑林 | 2023-10-16 | 33497位读者 | 引用在文章《随机分词浅探:从Viterbi Decoding到Viterbi Sampling》中,笔者提出了一种名为“Viterbi Sampling”的随机分词算法,它只是在求最优解的Viterbi Decoding基础上进行小修改,保留了Viterbi算法的简单快速的特点,相比于已有的Subword Regularization明显更加高效。不过,知乎上的读者 @鶴舞 指出,当前的采样算法可能会在多次二选一“稀释”了部分方案的出现概率,直接后果是原本分数最高的切分并不是以最高概率出现。
经过仔细思考后,笔者发现相应的问题确实存在,当时为了尽快得到一种新的采样算法,在细节上的思考和处理确实比较粗糙。为此,本文将进一步完善Viterbi Sampling算法,并证明完善后的算法在效果上可以跟Subword Regularization等价的。
问题分析
首先,我们来看一下评论原话:
写了个刷论文的辅助网站:Cool Papers
By 苏剑林 | 2023-12-25 | 91251位读者 | 引用写在开头
一直以来,笔者都有日刷Arxiv的习惯,以求尽可能跟上领域内最新成果,并告诫自己“不进则退”。之前也有不少读者问我是怎么刷Arxiv的、有什么辅助工具等,但事实上,在很长的时间里,笔者都是直接刷Arxiv官网,并且没有用任何算法过滤,都是自己一篇篇过的。这个过程很枯燥,但并非不能接受,之所以不用算法初筛,主要还是担心算法漏召,毕竟“刷”就是为了追新,一旦算法漏召就“错失先机”了。
自从Kimi Chat发布后,笔者就一直计划着写一个辅助网站结合Kimi来加速刷论文的过程。最近几个星期稍微闲了一点,于是在GPT4、Kimi的帮助下,初步写成了这个网站,并且经过几天的测试和优化后,已经逐步趋于稳定,于是正式邀请读者试用。
Cool Papers:https://papers.cool
局部余弦相似度大,全局余弦相似度一定也大吗?
By 苏剑林 | 2024-01-09 | 34258位读者 | 引用在分析模型的参数时,有些情况下我们会将模型的所有参数当成一个整体的向量,有些情况下我们则会将不同的参数拆开来看。比如,一个7B大小的LLAMA模型所拥有的70亿参数量,有时候我们会将它当成“一个70亿维的向量”,有时候我们会按照模型的实现方式将它看成“数百个不同维度的向量”,最极端的情况下,我们也会将它看成是“七十亿个1维向量”。既然有不同的看待方式,那么当我们要算一些统计指标时,也就会有不同的计算方式,即局部计算和全局计算,这引出了局部计算的指标与全局计算的指标有何关联的问题。
本文我们关心两个向量的余弦相似度。如果两个大向量的维度被拆成了若干组,同一组对应的子向量余弦相似度都很大,那么两个大向量的余弦相似度是否一定就大呢?答案是否定的。特别地,这还跟著名的“辛普森悖论”有关。
问题背景
这个问题源于笔者对优化器的参数增量导致的损失函数变化量的分析。具体来说,假设优化器的更新规则是:
\begin{equation}\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t \boldsymbol{u}_t\end{equation}
幂等生成网络IGN:试图将判别和生成合二为一的GAN
By 苏剑林 | 2024-01-31 | 41625位读者 | 引用前段时间,一个名为“幂等生成网络(Idempotent Generative Network,IGN)”的生成模型引起了一定的关注。它自称是一种独立于已有的VAE、GAN、flow、Diffusion之外的新型生成模型,并且具有单步采样的特点。也许是大家苦于当前主流的扩散模型的多步采样生成过程久矣,因此任何声称可以实现单步采样的“风吹草动”都很容易吸引人们的关注。此外,IGN名称中的“幂等”一词也增加了它的神秘感,进一步扩大了人们的期待,也成功引起了笔者的兴趣,只不过之前一直有别的事情要忙,所以没来得及认真阅读模型细节。
最近闲了一点,想起来还有个IGN没读,于是重新把论文翻了出来,但阅读之后却颇感困惑:这哪里是个新模型,不就是个GAN的变种吗?跟常规GAN不同的是,它将生成器和判别器合二为一了。那这个“合二为一”是不是有什么特别的好处,比如训练更稳定?个人又感觉没有。下面将分享笔者从GAN角度理解IGN的过程和疑问。
生成对抗
关于GAN(Generative Adversarial Network,生成对抗网络),笔者前几年系统地学习过一段时间(查看GAN标签可以查看到相关文章),但近几年没有持续地关注了,因此这里先对GAN做个简单的回顾,也方便后续章节中我们对比GAN与IGN之间的异同。
Cool Papers更新:简单搭建了一个站内检索系统
By 苏剑林 | 2024-05-07 | 38755位读者 | 引用自从《更便捷的Cool Papers打开方式:Chrome重定向扩展》之后,Cool Papers有两次比较大的变化,一次是引入了venue分支,逐步收录了一些会议历年的论文集,如ICLR、ICML等,这部分是动态人工扩充的,欢迎有心仪的会议的读者提更多需求;另一次就是本文的主题,前天新增加的站内检索功能。
本文将简单介绍一下新增功能,并对搭建站内检索系统的过程做个基本总结。
简介
在Cool Papers的首页,我们看到搜索入口:
最近评论