斯特灵(stirling)公式与渐近级数
By 苏剑林 | 2016-04-15 | 61792位读者 | 引用斯特灵近似,或者称斯特灵公式,最开始是作为阶乘的近似提出
$$n!\sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$$
符号$\sim$意味着
$$\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{n!}=1$$
将斯特灵公式进一步提高精度,就得到所谓的斯特灵级数
$$n!=\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(1+\frac{1}{12n}+\frac{1}{288n^2}\dots\right)$$
很遗憾,这个是渐近级数。
相关资料有:
https://zh.wikipedia.org/zh-cn/斯特灵公式
https://en.wikipedia.org/wiki/Stirling%27s_approximation
本文将会谈到斯特灵公式及其渐近级数的一个改进的推导,并解释渐近级数为什么渐近。
两个惊艳的python库:tqdm和retry
By 苏剑林 | 2016-08-13 | 67628位读者 | 引用Python基本是我目前工作、计算、数据挖掘的唯一编程语言(除了符号计算用Mathematica外)。当然,基本的Python功能并不是很强大,但它胜在有巨量的第三方扩展库。在选用Python的第三方库时,我都会经过仔细考虑,希望能挑选出最简单的、最直观的一个(因为本人比较笨,太复杂用不了)。在数据处理方面,我用得最多的是Numpy和Pandas,这两个绝对称得上王者级别的库,当然不能不提的是Scipy,但我很少直接用它,一般会通过Pandas间接调用了;可视化方面不用说是Matplotlib了;在建模方面,我会用Keras,直接上深度学习模型,Keras已经成为相当流行的深度学习框架了,如果做文本挖掘,通常还会用到jieba(分词)、Gensim(主题建模,包含了诸如word2vec之类的模型),机器学习库还有流行的Scikit Learn,但我很少用;网络方面,写爬虫我用requests,这是个人性化的网络库,如果写网站,我会用bottle,这是个单文件版的迷你框架,一切由自己定义,当然,我也不会去写什么大型网站,我就写一个简单的的接口那样而已;最后如果要并行的话,一般直接用multiprocessing。
不过,以上都不是本文要推荐的,本文要推荐的是两个可以渗透到日常写代码的库,它实现了我们平时很多时候都需要的功能,但是不用增加什么代码,绝对让人眼前一亮。
为什么勒贝格积分比黎曼积分强?
By 苏剑林 | 2016-11-16 | 118453位读者 | 引用学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?
这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。
本是同根生,相煎何太急?
词向量与Embedding究竟是怎么回事?
By 苏剑林 | 2016-12-03 | 283509位读者 | 引用词向量,英文名叫Word Embedding,按照字面意思,应该是词嵌入。说到词向量,不少读者应该会立马想到Google出品的Word2Vec,大牌效应就是不一样。另外,用Keras之类的框架还有一个Embedding层,也说是将词ID映射为向量。由于先入为主的意识,大家可能就会将词向量跟Word2Vec等同起来,而反过来问“Embedding是哪种词向量?”这类问题,尤其是对于初学者来说,应该是很混淆的。事实上,哪怕对于老手,也不一定能够很好地说清楚。
这一切,还得从one hot说起...
五十步笑百步
one hot,中文可以翻译为“独热”,是最原始的用来表示字、词的方式。为了简单,本文以字为例,词也是类似的。假如词表中有“科、学、空、间、不、错”六个字,one hot就是给这六个字分别用一个0-1编码:
$$\begin{array}{c|c}\hline\text{科} & [1, 0, 0, 0, 0, 0]\\
\text{学} & [0, 1, 0, 0, 0, 0]\\
\text{空} & [0, 0, 1, 0, 0, 0]\\
\text{间} & [0, 0, 0, 1, 0, 0]\\
\text{不} & [0, 0, 0, 0, 1, 0]\\
\text{错} & [0, 0, 0, 0, 0, 1]\\
\hline
\end{array}$$
狄拉克函数:级数逼近
By 苏剑林 | 2017-01-11 | 46784位读者 | 引用魏尔斯特拉斯定理
将狄拉克函数理解为函数的极限,可以衍生出很丰富的内容,而且这些内容离严格的证明并不遥远。比如,定义
$$\delta_n(x)=\left\{\begin{aligned}&\frac{(1-x^2)^n}{I_n},x\in[-1,1]\\
&0,\text{其它情形}\end{aligned}\right.$$
其中$I_n = \int_{-1}^1 (1-x^2)^n dx$,于是不难证明
$$\delta(x)=\lim_{n\to\infty}\delta_n(x)$$
这样,对于$[a,b]$上的连续函数$f(x)$,我们就得到
$$f(x)=\int_{-1}^1 f(y)\delta(x-y)dy = \lim_{n\to\infty}\int_{-1}^1 f(y)\delta_n(x-y) dy$$
这里$-1 < a < b < 1$,并且我们已经“不严谨”地交换了积分号和极限号,但这不是特别重要。重要的是它的结果:可以看到
$$P_n(x)=\int_{-1}^1 f(y)\delta_n(x-y) dy$$
是$x$的一个$2n$次多项式,因此上式表明$f(x)$是一个$2n$次的多项式的极限!这就引出了著名的“魏尔斯特拉斯定理”:
闭区间上的连续函数都可以用多项式一致地逼近。
SVD分解(二):为什么SVD意味着聚类?
By 苏剑林 | 2017-01-26 | 78542位读者 | 引用提前祝各位读者新年快乐,2017行好运~
这篇文章主要想回答两个“为什么”的问题:1、为啥我就对SVD感兴趣了?;2、为啥我说SVD是一个聚类过程?回答的内容纯粹个人思辨结果,暂无参考文献。
为什么要研究SVD?
从2015年接触深度学习到现在,已经研究了快两年的深度学习了,现在深度学习、数据科学等概念也遍地开花。为什么在深度学习火起来的时候,我反而要回去研究“古老”的SVD分解呢?我觉得,SVD作为一个矩阵分解算法,它的价值不仅仅体现在它广泛的应用,它背后还有更加深刻的内涵,即它的可解释性。在深度学习流行的今天,不少人还是觉得深度学习(神经网络)就是一个有效的“黑箱”模型。但是,仅用“黑箱”二字来解释深度学习的有效性显然不能让人满意。前面已经说过,SVD分解本质上与不带激活函数的三层自编码机等价,理解SVD分解,能够为神经网络模型寻求一个合理的概率解释。
Python的多进程编程技巧
By 苏剑林 | 2017-02-19 | 38901位读者 | 引用过程
在Python中,如果要多进程运算,一般是通过multiprocessing来实现的,常用的是multiprocessing中的进程池,比如:
from multiprocessing import Pool
import time
def f(x):
time.sleep(1)
print x+1
return x+1
a = range(10)
pool = Pool(4)
b = pool.map(f, a)
pool.close()
pool.join()
print b
这样写简明清晰,确实方便,有趣的是,只需要将multiprocessing换成multiprocessing.dummy,就可以将程序从多进程改为多线程了。
最近评论