变分法的一个技巧及其“误用”
By 苏剑林 | 2013-07-30 | 37617位读者 | 引用不可否认,变分法是非常有用而绝妙的一个数学工具,它“自动地”为我们在众多函数中选出了最优的一个,而免除了具体的分析过程。物理中的最小作用量原理则让变分法有了巨大的用武之地,并反过来也推动了变分法的发展。但是变分法的一个很明显的特点就是在大多数情况下计算相当复杂,甚至如果“蛮干”的话我们几乎连微分方程组都列不出来。因此,一些有用的技巧是很受欢迎的。本文就打算介绍这样的一个小技巧,来让某些变分问题得到一定的化简。
我是怎么得到这个技巧的呢?事实上,那是几个月前我在阅读《引力与时空》时,读到变分原理那一块时我怎么也读不懂,想不明白。明明我觉得是错误的东西,为什么可以得到正确的结果?我的数学直觉告诉我绝对是作者的错,可是我又想不出作者哪里错了,所以就一直把这个问题搁置着。最近我终于得到了自己比较满意的答案,并且窃认为是本文所要讲的这个技巧却被物理学家“误用”了。
技巧
首先来看通常我们是怎么处理变分问题的,以一元函数为例,对于求
$$S=\int L(x,\dot{x},t)dt$$
CreaWriter,惬意创作!
By 苏剑林 | 2013-08-08 | 20508位读者 | 引用[欧拉数学]找出严谨的答案
By 苏剑林 | 2013-09-09 | 19626位读者 | 引用在之前的一些文章中,我们已经谈到过欧拉数学。总体上来讲,欧拉数学就是具有创造性的、直觉性的技巧和方法,这些方法能够推导出一些漂亮的结果,而方法本身却并不严密。然而,在很多情况下,严密与直觉只是一步之遥。接下来要介绍的是我上学期《数学分析》期末考的一道试题,而我解答这道题的灵感来源便是“欧拉数学”。
数列${a_n}$是递增的正数列,求证:$\sum\limits_{n=1}^{\infty}\left(1-\frac{a_n}{a_{n+1}}\right)$收敛等价于${a_n}$收敛。
据说参考答案给出的方法是利用数列的柯西收敛准则,我也没有仔细去看,我在探索自己的更富有直觉型的方法。这就是所谓的“I do not understand what I can not create.”。下面是我的思路。
刚看完了电影《转山》,挺感动的,总觉得好像不写点东西就对不起这部电影了。
这还需要从上学期选公选课谈起。上学期我选择的公选课是数据库,而体育课则是太极,接近期末考的时候又重新选公选课了,我想选修一门轻松点、惬意点的课程,刚开始是选择了书法,后来看到了“自行车出行与户外旅游”,有点心动,再看上课老师,原来就是我们的太极老师,上了一学期的太极,跟他有些熟悉,也觉得他很好相处,就觉得选择这门课程了。
上一周二是这门课程是第一次课,老师讲得很精彩,而事实上,我唯一能够全程专心听课的就只有两门课程,一门就是这个公选课,另外就是马克思列宁主义(奇怪吧?确实是,马列老师讲得真的很精彩,我几乎没有分过神)。《转山》这部电影也是上公选课的时候老师推荐的,是根据同名小说改编的。大体的情节是一个台湾年轻人,只身踏上骑自行车从丽江到拉萨的旅途。影片描绘了他路上的崎岖行程,描绘了一路上的风土人情,让人颇为深刻。
一个人的数学建模:碎纸复原
By 苏剑林 | 2013-09-22 | 39184位读者 | 引用数学基本技艺(A Mathematical Trivium)
By 苏剑林 | 2013-09-26 | 24228位读者 | 引用这是Arnold给物理系学生出的基础数学题。原文是Arnold于1991年,在Russian Math Surveys 46:1(1991),271-278上发的一篇文章,英文名叫 A mathematical trivium,这篇文章是有个前言的,用两页纸的内容吐槽了1991年的学生数学学得很烂,尤其是物理系的。文后附了100道数学题,号称是物理系学生的数学底线。
这是给物理系出的数学题,所以和一般的数学竞赛题目不同,没太多证明题,主要就是计算和解模型,而且还有不少近似估算的,带有明显的物理风格。虽然作者说这是物理系学生数学的底线,但即使对于数学系的学生来说,这些题目还是有不少难度的。网络也有一些题目的答案,但是都比较零散。在这里与大家分享一下题目。什么时候有时间了,或者刚好碰到类似的研究,我也会把题目做做,与各位分享。希望有兴趣的朋友做了之后也把答案与大家交流呀。
数学基本技艺之23、24(上)
By 苏剑林 | 2013-09-26 | 16423位读者 | 引用数学基本技艺之23、24(下)
By 苏剑林 | 2013-09-27 | 24449位读者 | 引用在上一篇文章中我们得到了第23题的解,本来想接着类似地求第24题,但是看着23题的答案,又好像发现了一些新的东西,故没有继续写下去。等到今天在课堂上花了一节课研究了一下之后,得到了关于这种拟齐次微分方程的一些新的结果,遂另开一篇新文章,与大家分享。
一、特殊拟齐次微分方程的通解
在上一篇文章中,我们求出了拟齐次微分方程$\frac{dy}{dx}=x+\frac{x^3}{y}$的解:
$$(2y+x^2)(x^2-y)^2=C$$
或者写成这样的形式:
$$(y+\frac{1}{2} x^2)(y-x^2)^2=C$$
最近评论