13 Feb

MathPlayer 2.2发布,大家升级啦!

如果你已经安装了MathPlayer,就这里检查一下你的版本是否最新版:
http://www.dessci.com/en/products/mathplayer/check.htm

如果你还没有安装,欢迎你点击下面的链接下载安装:
http://www.dessci.com/en/products/mathplayer/download.htm

点击阅读全文...

18 Feb

两本天体力学的旧书...

由于BoJone有着天文和数学的共同爱好,所以近一段时间恋上了天体力学,这是天文的内容,也是数学在天文学大施拳脚的地方。每一步计算,都有可能是一个新的发现,这种感觉太棒了,也许这就是我前进的动力之一。

天体力学最重要、最基本的方法就是解微分方程,其中以常微分方程为主,而且更多的是常微分方程组。这对BoJone来说是一个极大的挑战,因为正在读高一的BoJone一切都得自学,这得以微积分、级数、解析几何等数学知识为基础,而且必须做到融会贯通,要把它当成手中的橡皮泥,随意捏弄,形变而质不变。不过幸好能够有轻松自由的学习环境,我相信,我可以!

前些天在淘宝上一位天爱把他收藏的旧书都出了,里面有一本《天体力学引论》和《天体力学教程》,这正是作者苦苦搜寻的天体力学教程呀!其实即便是大学用的天体力学书籍,也是80年代左右的书,这些书很少有更新,所以现在几乎没有出售的,一般有钱也买不到(让我捡了一个大便宜^_^)。店主链接

点击阅读全文...

21 Feb

把地球放到“宇宙中心”...

Solar_sys

Solar_sys

虽然地心说早已站不住脚了,但是我们的确是站在地球上观测宇宙的,我们得把地球视为静止的,才能满足我们日常的观测所需。也就是说,必须得以地球为参照系。这样,我们其实也就重新树立了地球的“宇宙中心”地位。最典型的模型就是所谓的天球坐标系,它的本质就是把地球看做宇宙的中心...

点击阅读全文...

2 May

解答不等式的误区...

前几天做到了一道不等式题目,求2a-b的值域。其中
$$1 < a + b < 2\tag{1}$$$$-2 < a - b < -1\tag{2}$$
老师很高兴地把两式左右两边加起来,得到$-1<2a<1$;然后把第二式乘以(-1),得到$1 < b - a < 2$,然后再与(1)相加,得到$2 < 2 b< 4 \Rightarrow 1 < b < 2$;接着把这式子乘上(-1),然后与$-1<2a<1$相加。于是结果很显然,$-3<2a-b<0$。读者们,你们觉得这做法有问题吗?

点击阅读全文...

14 May

奔向固原,追逐梦想...

今天和校长忙了一整天,还把妈妈都叫来了,什么交流、讨论、说明...终于把所有学校里的手续都办好了,明天就出发到石门中学,后天就直奔期待已久的固原。

固原一中

固原一中

点击阅读全文...

26 Jun

再次错过了“食”...

20100626月球模拟

20100626月球模拟

今年天公貌似很喜欢捉弄天文爱好者...

今年我们可见的有大约4次“食”的想象:日环食(我们这是偏食)、两次月全食、还有一次“月掩金星”,也是比较难得的天象。其中,发生在01月15日的日食因天气原因完全看不到太阳的影子;5月16日的“月掩金星”,我们却已经赶到了宁夏固原,而固原不在掩星地区的范围内!今天的月食,再次因为天气原因,丝毫不能看到月球的身影...

点击阅读全文...

7 Jul

外出集训,网站暂停更新...

留心本站的朋友应该注意到,本站的更新“貌似”进入了“停滞”状态,就连一直更新的每月天象也停了。的确,最近比较忙。7月一直上课,直到今天考完期末考才停止。考完期末考,明天又要立马到北京进行天文集训了,无奈的忙碌......

所以网站还是暂停一下吧....(集训时间:7月8号到14号)

15 Jul

《向量》系列——1.向心力公式证明

向量在几何和物理中都有极其重要的作用,现在就让我们来看如何用向量研究物理中的圆周运动。

首先我们必须了解一些基础:

1.在向量中,只要一条“向径”($\vec{r}$)就可以描述出物体的运动,而不需要建立坐标系。这就是向量应用于物理的原因:物理定律不应该依赖于坐标系,而向量恰恰也不依赖于坐标系!
2.牛顿第二定律:$\vec{F}=m\vec{a}$
3.以及一些向量的微积分运算等(可以查阅维基百科或者相关资料)

在下面及以后的文章描述中,为了大家的阅读方便,把向量写成$\vec{r}$的形式,而非把字母加粗。一般情况下,在本站的描述中,有$|\vec{r}|=r,|\dot{\vec{r}}|=v,|\ddot{\vec{r}}|=a$。但是,$\dot{r}=\frac{d|\vec{r}|}{dt} != |\dot{\vec{r}}|$

点击阅读全文...