1 Sep

Decoder-only的LLM为什么需要位置编码?

众所周知,目前主流的LLM,都是基于Causal Attention的Decoder-only模型(对此我们在《为什么现在的LLM都是Decoder-only的架构?》也有过相关讨论),而对于Causal Attention,已经有不少工作表明它不需要额外的位置编码(简称NoPE)就可以取得非平凡的结果。然而,事实是主流的Decoder-only LLM都还是加上了额外的位置编码,比如RoPE、ALIBI等。

那么问题就来了:明明说了不加位置编码也可以,为什么主流的LLM反而都加上了呢?不是说“多一事不如少一事”吗?这篇文章我们从三个角度给出笔者的看法:

1、位置编码对于Attention的作用是什么?

2、NoPE的Causal Attention是怎么实现位置编码的?

3、NoPE实现的位置编码有什么不足?

点击阅读全文...

18 Jul

欢聚兴隆,畅言科普

欢聚兴隆,畅言科普
记信息时代的天文科普研讨会暨第三届宇宙驿站站长联谊会

在信息时代的今天,利用互联网相互交流以及查找各种资讯已经成为了许多天文爱好者的必经之道。同好们也许都浏览过牧夫天文论坛、星友空间站、空间天文网等天文科学网站,事实上,它们都源于一个共同的科普网站群体——宇宙驿站。正如她的名字所言,宇宙驿站是我们一大群天文爱好者在互联网上的“家”,她为我们这群热衷于网络科普的站长免费提供了稳定的网站空间。

宇宙驿站发起于2002年,是国家天文台LAMOST项目之一,迄今已经有近百位站长在上面“安家”。2013年6月28日到6月30日,我们这群站长齐聚兴隆,开展了一次别开生面的会议——“信息时代的天文科普研讨会暨第三届站长联谊会”。

点击阅读全文...

2 Aug

七夕-雨

七夕,想随便说一些。大家路过就行~~

印象之中,连续几年的七夕这一天都下雨,今天也下了一点雨。妈妈说七夕的雨是神仙水,很小的时候,如果七夕下雨,还专门装一些来洗澡。

牛郎织女相会了没有?

研究数学了。

1 May

【不可思议的Word2Vec】 4.不一样的“相似”

相似度的定义

当用Word2Vec得到词向量后,一般我们会用余弦相似度来比较两个词的相似程度,定义为
$$\cos (\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}\cdot\boldsymbol{y}}{|\boldsymbol{x}|\times|\boldsymbol{y}|}$$
有了这个相似度概念,我们既可以比较任意两个词之间的相似度,也可以找出跟给定词最相近的词语。这在gensim的Word2Vec中,由most_similar函数实现。

等等!我们很快给出了相似度的计算公式,可是我们居然还没有“定义”相似!连相似都没有定义,怎么就得到了评估相似度的数学公式了呢?

要注意,这不是一个可以随意忽略的问题。很多时候我们都不知道我们干的是什么,就直接去干了。好比上一篇文章说到提取关键词,相信很多人都未曾想过,什么是关键词,难道就仅仅说关键词就是很“关键”的词?而如果想到,关键词就是用来估计文章大概讲什么的,这样我们就得到一种很自然的关键词定义
$$keywords = \mathop{\text{argmax}}_{w\in s}p(s|w)$$
进而可以用各种方法对它建模。

回到本文的主题来,相似度怎么定义呢?答案是:看场景定义所需要的相似。

点击阅读全文...

9 Jan

局部余弦相似度大,全局余弦相似度一定也大吗?

在分析模型的参数时,有些情况下我们会将模型的所有参数当成一个整体的向量,有些情况下我们则会将不同的参数拆开来看。比如,一个7B大小的LLAMA模型所拥有的70亿参数量,有时候我们会将它当成“一个70亿维的向量”,有时候我们会按照模型的实现方式将它看成“数百个不同维度的向量”,最极端的情况下,我们也会将它看成是“七十亿个1维向量”。既然有不同的看待方式,那么当我们要算一些统计指标时,也就会有不同的计算方式,即局部计算和全局计算,这引出了局部计算的指标与全局计算的指标有何关联的问题。

本文我们关心两个向量的余弦相似度。如果两个大向量的维度被拆成了若干组,同一组对应的子向量余弦相似度都很大,那么两个大向量的余弦相似度是否一定就大呢?答案是否定的。特别地,这还跟著名的“辛普森悖论”有关。

问题背景

这个问题源于笔者对优化器的参数增量导致的损失函数变化量的分析。具体来说,假设优化器的更新规则是:
\begin{equation}\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta_t \boldsymbol{u}_t\end{equation}

点击阅读全文...

26 Jan

Transformer升级之路:16、“复盘”长度外推技术

回过头来看,才发现从第7篇《Transformer升级之路:7、长度外推性与局部注意力》开始,“Transformer升级之路”这个系列就跟长度外推“杠”上了,接连9篇文章(不算本文)都是围绕长度外推展开的。如今,距离第7篇文章刚好是一年多一点,在这一年间,开源社区关于长度外推的研究有了显著进展,笔者也逐渐有了一些自己的理解,比如其实这个问题远不像一开始想象那么简单,以往很多基于局部注意力的工作也不总是有效,这暗示着很多旧的分析工作并没触及问题的核心。

在这篇文章中,笔者尝试结合自己的发现和认识,去“复盘”一下主流的长度外推结果,并试图从中发现免训练长度外推的关键之处。

问题定义

顾名思义,免训练长度外推,就是不需要用长序列数据进行额外的训练,只用短序列语料对模型进行训练,就可以得到一个能够处理和预测长序列的模型,即“Train Short, Test Long”。那么如何判断一个模型能否用于长序列呢?最基本的指标就是模型的长序列Loss或者PPL不会爆炸,更加符合实践的评测则是输入足够长的Context,让模型去预测答案,然后跟真实答案做对比,算BLEU、ROUGE等,LongBench就是就属于这类榜单。

点击阅读全文...

2 Feb

更便捷的Cool Papers打开方式:Chrome重定向扩展

一些铺垫

自Cool Papers上线以来,很多用户就建议笔者加入搜索功能,后面也确实在前端用JS简单做了个页面内搜索,解决了部分用户的需求,但仍有读者希望引入更完整的全局搜索。诚然,笔者理解这个需求确实是存在,但Cool Papers的数据是逐天累积的,目前才上线一个月,论文数并不多,建立一个大而全的搜索引擎意义不大,其次做搜索也不是笔者的强项,以及并没有很好的利用LLM优化搜索的思路,等等。总而言之,暂时没有条件实现一个全面而又有特色的搜索,所以不如不做(也欢迎大家在评论区集思广益)。

后来,经过和同事讨论,想出了一个“借花献佛”的思路——写一个Chrome的重定向扩展,可以从任意页面重定向到Cool Papers。这样我们可以用任意方式(如Google搜索或者直接Arxiv官方搜索)找到Arxiv上的论文,然后右击一下就转到Cool Papers了。前两周这个扩展已经在Chrome应用商店上线,上周服务器配合做了一些调整,如今大家可以尝试使用了。

扩展地址:Cool Papers Redirector

点击阅读全文...

21 Feb

“闭门造车”之多模态思路浅谈(一):无损输入

这篇文章分享一下笔者关于多模态模型架构的一些闭门造车的想法,或者说一些猜测。

最近Google的Gemini 1.5和OpenAI的Sora再次点燃了不少人对多模态的热情,只言片语的技术报告也引起了大家对其背后模型架构的热烈猜测。不过,本文并非是为了凑这个热闹才发出来的,事实上其中的一些思考由来已久,最近才勉强捋顺了一下,遂想写出来跟大家交流一波,刚好碰上了两者的发布。

事先声明,“闭门造车”一词并非自谦,笔者的大模型实践本就“乏善可陈”,而多模态实践更是几乎“一片空白”,本文确实只是根据以往文本生成和图像生成的一些经验所做的“主观臆测”。

问题背景

首先简化一下问题,本文所讨论的多模态,主要指图文混合的双模态,即输入和输出都可以是图文。可能有不少读者的第一感觉是:多模态模型难道不也是烧钱堆显卡,Transformer“一把梭”,最终“大力出奇迹”吗?

点击阅读全文...