让炼丹更科学一些(一):SGD的平均损失收敛
By 苏剑林 | 2023-12-19 | 35892位读者 | 引用很多时候我们将深度学习模型的训练过程戏称为“炼丹”,因为整个过程跟古代的炼丹术一样,看上去有一定的科学依据,但整体却给人一种“玄之又玄”的感觉。尽管本站之前也关注过一些优化器相关的工作,甚至也写过《从动力学角度看优化算法》系列,但都是比较表面的介绍,并没有涉及到更深入的理论。为了让以后的炼丹更科学一些,笔者决定去补习一些优化相关的理论结果,争取让炼丹之路多点理论支撑。
在本文中,我们将学习随机梯度下降(SGD)的一个非常基础的收敛结论。虽然现在看来,该结论显得很粗糙且不实用,但它是优化器收敛性证明的一次非常重要的尝试,特别是它考虑了我们实际使用的是随机梯度下降(SGD)而不是全量梯度下降(GD)这一特性,使得结论更加具有参考意义。
问题设置
设损失函数是$L(\boldsymbol{x},\boldsymbol{\theta})$,其实$\boldsymbol{x}$是训练集,而$\boldsymbol{\theta}\in\mathbb{R}^d$是训练参数。受限于算力,我们通常只能执行随机梯度下降(SGD),即每步只能采样一个训练子集来计算损失函数并更新参数,假设采样是独立同分布的,第$t$步采样到的子集为$\boldsymbol{x}_t$,那么我们可以合理地认为实际优化的最终目标是
\begin{equation}L(\boldsymbol{\theta}) = \lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T L(\boldsymbol{x}_t,\boldsymbol{\theta})\label{eq:loss}\end{equation}
幂等生成网络IGN:试图将判别和生成合二为一的GAN
By 苏剑林 | 2024-01-31 | 41491位读者 | 引用前段时间,一个名为“幂等生成网络(Idempotent Generative Network,IGN)”的生成模型引起了一定的关注。它自称是一种独立于已有的VAE、GAN、flow、Diffusion之外的新型生成模型,并且具有单步采样的特点。也许是大家苦于当前主流的扩散模型的多步采样生成过程久矣,因此任何声称可以实现单步采样的“风吹草动”都很容易吸引人们的关注。此外,IGN名称中的“幂等”一词也增加了它的神秘感,进一步扩大了人们的期待,也成功引起了笔者的兴趣,只不过之前一直有别的事情要忙,所以没来得及认真阅读模型细节。
最近闲了一点,想起来还有个IGN没读,于是重新把论文翻了出来,但阅读之后却颇感困惑:这哪里是个新模型,不就是个GAN的变种吗?跟常规GAN不同的是,它将生成器和判别器合二为一了。那这个“合二为一”是不是有什么特别的好处,比如训练更稳定?个人又感觉没有。下面将分享笔者从GAN角度理解IGN的过程和疑问。
生成对抗
关于GAN(Generative Adversarial Network,生成对抗网络),笔者前几年系统地学习过一段时间(查看GAN标签可以查看到相关文章),但近几年没有持续地关注了,因此这里先对GAN做个简单的回顾,也方便后续章节中我们对比GAN与IGN之间的异同。
配置不同的学习率,LoRA还能再涨一点?
By 苏剑林 | 2024-02-27 | 45203位读者 | 引用LoRA(Low-Rank Adaptation)是当前LLM的参数高效微调手段之一,此前我们在《梯度视角下的LoRA:简介、分析、猜测及推广》也有过简单讨论。这篇文章我们来学习LoRA的一个新结论:
给LoRA的两个矩阵分配不同的学习率,LoRA的效果还能进一步提升。
该结论出自最近的论文《LoRA+: Efficient Low Rank Adaptation of Large Models》(下称“LoRA+”)。咋看之下,该结论似乎没有什么特别的,因为配置不同的学习率相当于引入了新的超参数,通常来说只要引入并精调超参数都会有提升。“LoRA+”的特别之处在于,它从理论角度肯定了这个必要性,并且断定最优解必然是右矩阵的学习率大于左矩阵的学习率。简而言之,“LoRA+”称得上是理论指导训练并且在实践中确实有效的经典例子,值得仔细学习一番。
结论简析
假设预训练参数为$W_0 \in \mathbb{R}^{n\times m}$,如果使用全量参数微调,那么增量也是一个$n\times m$矩阵。为了降低参数量,LoRA将更新量约束为低秩矩阵,即设$W=W_0 + AB$,其中$A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}$以及有$r\ll \min(n,m)$,用新的$W$替换模型原有参数,然后固定$W_0$不变,训练的时候只更新$A,B$,如下图所示:
$$\style{display: inline-block; width: 24ex; padding: 10ex 0; border: 1px solid #6C8EBF; background-color: #DAE8FC}{W_0\in\mathbb{R}^{n\times m}} \quad + \quad \style{display: inline-block; width: 8ex; padding: 10ex 0; border: 1px solid #D79B00; background-color: #FFE6CC}{A\in\mathbb{R}^{n\times r}}\quad\times\quad \style{display: inline-block; width: 24ex; padding: 3ex 0; border: 1px solid #D79B00; background-color: #FFE6CC}{B\in\mathbb{R}^{r\times m}}$$
生成扩散模型漫谈(二十五):基于恒等式的蒸馏(上)
By 苏剑林 | 2024-05-01 | 45053位读者 | 引用今天我们分享一下论文《Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation》,顾名思义,这是一篇探讨如何更快更好地蒸馏扩散模型的新论文。
即便没有做过蒸馏,大家应该也能猜到蒸馏的常规步骤:随机采样大量输入,然后用扩散模型生成相应结果作为输出,用这些输入输出作为训练数据对,来监督训练一个新模型。然而,众所周知作为教师的原始扩散模型通常需要多步(比如1000步)迭代才能生成高质量输出,所以且不论中间训练细节如何,该方案的一个显著缺点是生成训练数据太费时费力。此外,蒸馏之后的学生模型通常或多或少都有效果损失。
有没有方法能一次性解决这两个缺点呢?这就是上述论文试图要解决的问题。
重温SSM(一):线性系统和HiPPO矩阵
By 苏剑林 | 2024-05-24 | 41370位读者 | 引用前几天,笔者看了几篇介绍SSM(State Space Model)的文章,才发现原来自己从未认真了解过SSM,于是打算认真去学习一下SSM的相关内容,顺便开了这个新坑,记录一下学习所得。
SSM的概念由来已久,但这里我们特指深度学习中的SSM,一般认为其开篇之作是2021年的S4,不算太老,而SSM最新最火的变体大概是去年的Mamba。当然,当我们谈到SSM时,也可能泛指一切线性RNN模型,这样RWKV、RetNet还有此前我们在《Google新作试图“复活”RNN:RNN能否再次辉煌?》介绍过的LRU都可以归入此类。不少SSM变体致力于成为Transformer的竞争者,尽管笔者并不认为有完全替代的可能性,但SSM本身优雅的数学性质也值得学习一番。
尽管我们说SSM起源于S4,但在S4之前,SSM有一篇非常强大的奠基之作《HiPPO: Recurrent Memory with Optimal Polynomial Projections》(简称HiPPO),所以本文从HiPPO开始说起。
重温SSM(二):HiPPO的一些遗留问题
By 苏剑林 | 2024-06-05 | 21054位读者 | 引用书接上文,在上一篇文章《重温SSM(一):线性系统和HiPPO矩阵》中,我们详细讨论了HiPPO逼近框架其HiPPO矩阵的推导,其原理是通过正交函数基来动态地逼近一个实时更新的函数,其投影系数的动力学正好是一个线性系统,而如果以正交多项式为基,那么线性系统的核心矩阵我们可以解析地求解出来,该矩阵就称为HiPPO矩阵。
当然,上一篇文章侧重于HiPPO矩阵的推导,并没有对它的性质做进一步分析,此外诸如“如何离散化以应用于实际数据”、“除了多项式基外其他基是否也可以解析求解”等问题也没有详细讨论到。接下来我们将补充探讨相关问题。
离散格式
假设读者已经阅读并理解上一篇文章的内容,那么这里我们就不再进行过多的铺垫。在上一篇文章中,我们推导出了两类线性ODE系统,分别是:
\begin{align}
&\text{HiPPO-LegT:}\quad x'(t) = Ax(t) + Bu(t) \label{eq:legt-ode}\\[5pt]
&\text{HiPPO-LegS:}\quad x'(t) = \frac{A}{t}x(t) + \frac{B}{t}u(t) \label{eq:legs-ode}\end{align}
其中$A,B$是与时间$t$无关的常数矩阵,HiPPO矩阵主要指矩阵$A$。在这一节中,我们讨论这两个ODE的离散化。
通向概率分布之路:盘点Softmax及其替代品
By 苏剑林 | 2024-06-14 | 26282位读者 | 引用不论是在基础的分类任务中,还是如今无处不在的注意力机制中,概率分布的构建都是一个关键步骤。具体来说,就是将一个$n$维的任意向量,转换为一个$n$元的离散型概率分布。众所周知,这个问题的标准答案是Softmax,它是指数归一化的形式,相对来说比较简单直观,同时也伴有很多优良性质,从而成为大部分场景下的“标配”。
尽管如此,Softmax在某些场景下也有一些不如人意之处,比如不够稀疏、无法绝对等于零等,因此很多替代品也应运而生。在这篇文章中,我们将简单总结一下Softmax的相关性质,并盘点和对比一下它的部分替代方案。
Softmax回顾
首先引入一些通用记号:$\boldsymbol{x} = (x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$是需要转为概率分布的$n$维向量,它的分量可正可负,也没有限定的上下界。$\Delta^{n-1}$定义为全体$n$元离散概率分布的集合,即
\begin{equation}\Delta^{n-1} = \left\{\boldsymbol{p}=(p_1,p_2,\cdots,p_n)\left|\, p_1,p_2,\cdots,p_n\geq 0,\sum_{i=1}^n p_i = 1\right.\right\}\end{equation}
之所以标注$n-1$而不是$n$,是因为约束$\sum\limits_{i=1}^n p_i = 1$定义了$n$维空间中的一个$n-1$维子平面,再加上$p_i\geq 0$的约束,$(p_1,p_2,\cdots,p_n)$的集合就只是该平面的一个子集,即实际维度只有$n-1$。
重温SSM(三):HiPPO的高效计算(S4)
By 苏剑林 | 2024-06-20 | 25809位读者 | 引用前面我们用两篇文章《重温SSM(一):线性系统和HiPPO矩阵》和《重温SSM(二):HiPPO的一些遗留问题》介绍了HiPPO的思想和推导——通过正交函数基对持续更新的函数进行实时逼近,其拟合系数的动力学正好可以表示为一个线性ODE系统,并且对于特定的基底以及逼近方式,我们可以将线性系统的关键矩阵精确地算出来。此外,我们还讨论了HiPPO的离散化和相关性质等问题,这些内容奠定了后续的SSM工作的理论基础。
接下来,我们将介绍HiPPO的后续应用篇《Efficiently Modeling Long Sequences with Structured State Spaces》(简称S4),它利用HiPPO的推导结果作为序列建模的基本工具,并从新的视角探讨了高效的计算和训练方式,最后在不少长序列建模任务上验证了它的有效性,可谓SSM乃至RNN复兴的代表作之一。
基本框架
S4使用的序列建模框架,是如下的线性ODE系统:
\begin{equation}\begin{aligned}
x'(t) =&\, A x(t) + B u(t) \\
y(t) =&\, C^* x(t) + D u(t)
\end{aligned}\end{equation}
最近评论