《虚拟的实在(4)》——质量是什么
By 苏剑林 | 2013-07-22 | 58239位读者 | 引用笔者很少会谈到定义性的东西,原因很简单,因为我也不见得会比大家清楚,或者说也未必比大家所知道的准确。不过,刚刚与同好讨论过与质量相关的问题,就跟大家分享一下。
最初的问题是能量能不能转化为物质,我觉得根据$E=mc^2$,是显然可以的,例子嘛,我首先想到在量子场论中的真空是会不断产生和湮灭正负电子对的,因此这可以作为一个证据。但是这个感觉上太遥远了,所以我在互联网搜索了一下,不过搜到的内容大同小异:
当辐射光子能量足够高时,在它从原子核旁边经过时,在核库仑场作用下,辐射光子可能转化成一个正电子和一个负电子,这种过程称作电子对效应。
(正负电子对效应)
变分法的一个技巧及其“误用”
By 苏剑林 | 2013-07-30 | 37851位读者 | 引用不可否认,变分法是非常有用而绝妙的一个数学工具,它“自动地”为我们在众多函数中选出了最优的一个,而免除了具体的分析过程。物理中的最小作用量原理则让变分法有了巨大的用武之地,并反过来也推动了变分法的发展。但是变分法的一个很明显的特点就是在大多数情况下计算相当复杂,甚至如果“蛮干”的话我们几乎连微分方程组都列不出来。因此,一些有用的技巧是很受欢迎的。本文就打算介绍这样的一个小技巧,来让某些变分问题得到一定的化简。
我是怎么得到这个技巧的呢?事实上,那是几个月前我在阅读《引力与时空》时,读到变分原理那一块时我怎么也读不懂,想不明白。明明我觉得是错误的东西,为什么可以得到正确的结果?我的数学直觉告诉我绝对是作者的错,可是我又想不出作者哪里错了,所以就一直把这个问题搁置着。最近我终于得到了自己比较满意的答案,并且窃认为是本文所要讲的这个技巧却被物理学家“误用”了。
技巧
首先来看通常我们是怎么处理变分问题的,以一元函数为例,对于求
$$S=\int L(x,\dot{x},t)dt$$
暑假结束了,上学去~
By 苏剑林 | 2013-08-31 | 22305位读者 | 引用一个多月的暑假已经结束了,又回到了学校来。准确地说,昨天已经来到了学校,只是着搞卫生、社团等工作,无暇到blog上写点什么。早晨起来,一时无聊,就随便唠叨几句。
暑假就这样过去了,这也意味着大一完全过去了,我已经成为了师兄。曾不止一次感叹“光阴似箭,日月如梭”,而我越发地体味到这一点。不少人到了大学之后才明白高中生活的美好,而我有点不同,我在高中已经懂得大学并没有我们想象中的完美,所以我对大学和高中都抱有同样的眷恋和期待。大一过去了,从外边看来,我唯一的变化就是瘦了,沧桑了吧。还记得时隔一年的体检,我的体重居然少了十斤,以至于让我不得不怀疑那个秤的准确性;还记得多少次被小孩子喊做“叔叔”,被师兄称作“师兄”......
[欧拉数学]找出严谨的答案
By 苏剑林 | 2013-09-09 | 19747位读者 | 引用在之前的一些文章中,我们已经谈到过欧拉数学。总体上来讲,欧拉数学就是具有创造性的、直觉性的技巧和方法,这些方法能够推导出一些漂亮的结果,而方法本身却并不严密。然而,在很多情况下,严密与直觉只是一步之遥。接下来要介绍的是我上学期《数学分析》期末考的一道试题,而我解答这道题的灵感来源便是“欧拉数学”。
数列${a_n}$是递增的正数列,求证:$\sum\limits_{n=1}^{\infty}\left(1-\frac{a_n}{a_{n+1}}\right)$收敛等价于${a_n}$收敛。
据说参考答案给出的方法是利用数列的柯西收敛准则,我也没有仔细去看,我在探索自己的更富有直觉型的方法。这就是所谓的“I do not understand what I can not create.”。下面是我的思路。
数学基本技艺之23、24(上)
By 苏剑林 | 2013-09-26 | 16482位读者 | 引用数学基本技艺之23、24(下)
By 苏剑林 | 2013-09-27 | 24563位读者 | 引用在上一篇文章中我们得到了第23题的解,本来想接着类似地求第24题,但是看着23题的答案,又好像发现了一些新的东西,故没有继续写下去。等到今天在课堂上花了一节课研究了一下之后,得到了关于这种拟齐次微分方程的一些新的结果,遂另开一篇新文章,与大家分享。
一、特殊拟齐次微分方程的通解
在上一篇文章中,我们求出了拟齐次微分方程$\frac{dy}{dx}=x+\frac{x^3}{y}$的解:
$$(2y+x^2)(x^2-y)^2=C$$
或者写成这样的形式:
$$(y+\frac{1}{2} x^2)(y-x^2)^2=C$$
力学系统及其对偶性(三)
By 苏剑林 | 2013-11-15 | 17575位读者 | 引用在上一篇文章中,我已经初步地从最小作用量原理的角度来观察对偶定律的表现。虽然那是一种便捷有效的方法,但是还是给我们流下了一些遗憾。上一节是从几何形式的作用量原理出发的,而没有在一般形式的作用量框架下讨论。因为如果在$S=\int Ldt=\int (T-U)dt$的形式下讨论坐标变换问题会出现困难,困难源于我们进行了变换$d\tau=|z|^2 dt$,这导致了时间和空间的耦合,变分不能简单地进行。但是,这并非无法解决的问题。我们还是可以在基本的作用量原理之下讨论变换问题。下面将对此问题进行讨论。
变分中的变量代换
考虑一个一般的保守系统的作用量:
$$S=\int_{t_1}^{t_2} L(q,\frac{dq}{dt})dt$$
最近评论