7 Mar

轻微的扰动——摄动法简介(3)

微分方程领域大放光彩

虽然微分方程在各个计算领域都能一展才华,不过它最辉煌的光芒无疑绽放于微分方程领域,包括常微分方程和偏微分方程。海王星——“笔尖上发现的行星”——就是摄动法的著名成果,类似的还有冥王星的发现。天体力学家用一颗假设的行星的引力摄动来解释已知行星的异常运动,并由此反推未知行星的轨道。我们已不止一次提到过,一般的三体问题是混沌的,没有精确的解析解。这就要求我们考虑一些近似的方法,这样的方法发展起来就成为了摄动理论。

跟解代数方程一样,摄动法解带有小参数或者大参数的微分方程的基本思想,就是将微分方程的解表达为小参数或大参数的幂级数。当然,这是最直接的,也相当好理解,不过所求得的级数解有可能存在一些性态不好的情况,比如有时原解应该是一个周期运动,但是级数解却出现了诸如$t \sin t$的“长期项”,这是相当不利的,因此也发展出各种技巧来消除这些项。可见,摄动理论是一门应用广泛、集众家所大成的实用理论。下面我们将通过一些实际的例子来阐述这个技巧。

点击阅读全文...

24 Mar

费曼积分法(5):欧拉数学的传承

在大学第二学期,我们的《数学分析》终于龟速地爬行到了定积分这一章节。对于一些比较复杂的定积分,我总想用自己的方法来解决它,这就重新燃起了我对“费曼积分法——积分符号内取微分”的热情。尤其是我用费曼积分法解决了几道比较有趣复杂的定积分问题时,成就感高涨,遂在此总结,与大家共勉。

这和欧拉数学有什么关系呢?之前已经提到过,欧拉数学是用一种不严谨却极具创造性的方式,给予我们对数学的介乎感性和理性的直观理解。我觉得费曼积分法也属于这个范畴内,它着眼于用一种特殊的视角解决问题,而暂时忽略掉数学严密性。在读费曼的故事中,我感觉到这种思想是贯穿他一生的研究之中的。

本文继续对费曼积分法的研究,得出一些不是很严谨的结论,为以后的应用奠下基础。

一、不成立的函数

首先我们重新考虑$\int_0^{\infty} \frac{\sin x}{x}dx$。这一次我们将它引入复数范畴内,考虑:
$$\int_0^{\infty}\frac{\cos x+i \sin x}{x}dx=\int_0^{\infty}\frac{e^{ix}}{x}dx$$

点击阅读全文...

27 Mar

费曼积分法(7):欧拉数学的综合

在本系列的第五篇文章中,BoJone导出了一些看似不合理的公式,而且并没有说明它的应用和来源。其实,这些都是我在研究以下积分的时候总结出来的:

$$\int_{-\infty}^{+\infty} \frac{\cos x}{a^2+x^2}dx$$

点击阅读全文...

24 Apr

“抢15”游戏简析

昨天在上“科学计算软件”课时,讲到了一个“抢15”游戏(Pick15),就是在1~9这9个数字中,双方轮流选一个数字,不可重复,谁的数字中有三个数字的和为15的,谁就是赢家。

这是个简单的游戏,属于博弈论范畴。在博弈论中有一个著名的“策梅洛定理”(Zermelo's theorem),它指出在二人的有限游戏中,如果双方皆拥有完全的资讯,并且运气因素并不牵涉在游戏中,那先行或后行者当一必有一方有必胜/必不败的策略。比如中国象棋就属于这一类游戏,它告诉我们对于其中一方必有一种必不败策略(有可能和棋,有可能胜,反正不会输)。当然,策梅洛定理只是告诉我们其存在性,并没有告诉我们怎么发现这个策略,甚至连哪一方有这种最优策略都没有给出判别方法。这是幸运的,因为如果真有一天发现了这种策略,那么像象棋这类博弈就失去了意义了

上述的抢15游戏当然也属于这类游戏。不同于象棋的千变万化,它的变化比较简单,而且很容易看出它对先手有着明显的优势。下面我们来分析一下。

点击阅读全文...

8 Apr

浅谈引力助推

这已经是去年写的稿件了,刊登在今年二月份的《天文爱好者》上,本文的标题还登载了该期天爱的封面上,当时甚是高兴呢!在此与大家分享、共勉。

相信许多天文爱好者都知道第一、第二、第三宇宙速度的概念,也会有不少的天爱自己动手计算过它们。我们道,只要发射速度达到7.9km/s,宇宙飞船就可以绕地球运行了;超过11.2km/s,就可以抛开地球,成为太阳系的一颗“人造行星”;再大一点,超过16.7km/s,那么就连太阳也甩掉了,直奔深空。

16.7km/s,咋看上去并不大,因为地球绕太阳运行的速度已经是30km/s了,这个速度在宇宙中实在是太普通了。但是对于我们目前的技术来说,它大得有点可怕。维基百科上的资料显示,史上最强劲的火箭土星五号在运送阿波罗11号到月球时,飞船最终也只能加速到接近逃逸速度,即11.2km/s,而事实上第三宇宙速度已经是是目前人造飞行器的速度极限了。可是没有速度,我们就不能发射探测器去探索深空,那些科幻小说中的“星际移民”,就永远只能停留在小说上了。

点击阅读全文...

22 May

当Matlab遇上牛顿法

牛顿法是求方程近似根的一个相当有用而且快捷的方法,我们最近科学计算软件课程(Matlab)的一个作业就是编写求方程近似解的程序,其中涉及到牛顿法。我们要实现的目标是,用户输入一道方程,脚本就自动求出根来。这看起来是一个挺简单的循环迭代程序,但是由于Matlab本身的特殊性,却产生了不少困难。

Matlab是为了数值计算(尤其是矩阵运算)而生的,因此它并不擅长处理符号计算。这就给我们编程带来了困难。在网上随便一搜,就可以发现,网上的Matlab牛顿法程序都是要求用户同时输入方程及其导函数,这显然是不方便的,因为Matlab本身就具备了求导功能。下面我们来分析一下困难在哪里。

我们要实现的最基本功能是定义一个函数,然后可以根据该函数求具体的函数值,并且自动求该函数的导数,接着求导数值。这些看起来很基本的功能在Matlab中却很难调和,因为Matlab的“函数”定义很广,一个具有特定功能的M文件叫“函数”,一个运算式$f(x)$也可能是一个函数,显然后者是可以求导的,前者却不行,所以Matlab一刀砍——不能对函数求导!!

点击阅读全文...

5 May

费曼讲座视频分享

传说费曼讲课很精彩,但他是上个世纪的人,所以也就没有多少视频保留下来。但是网上还是存有一些,有兴趣的读者可以收藏。

费曼讲座——光、电子、路径积分(无字幕)
http://v.youku.com/v_show/id_XNjAyMzU4ODg=.html

http://v.youku.com/v_show/id_XNjAyMzQ4NzI=.html

http://v.youku.com/v_show/id_XNTQzMTEyNTA4.html

http://v.youku.com/v_show/id_XNjAyMzQ4MzI=.html

点击阅读全文...

11 May

电的相对论效应——磁“子虚乌有”?

也许大家会觉得,相对论中有一个因子
$$\gamma =\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$$
因此,相对论的效应只有在高速情况下,即v比较接近于c的情况下才会凸显出来。这在一般情况下是正确的,但是却不全对。因为存在相当明显的、速度低于1mm/s的相对论效应——那就是几乎人尽皆知的“磁”。

之前已经提及过,磁场可以解释为电场的相对论效应,因此所有电磁现象都可以归因为电场和相对论。事实上,这是正确的,只是教科书上并没有明确说出这一点而已。于是我们就不难理解“为什么电磁学的麦克斯韦方程组会与相对论协调”、“为什么电场与磁场的表现如此相似”等等问题了,因为它们的探究本身就在相对论的框架下,磁场和电场都是一个东西的结果。

点击阅读全文...