5 Dec

三角函数幂的定积分

最近的我的主要学习是在研究路径积分,在推导路径积分的一种新的变换方法(或者是一个新的视角吧),但是有道坎还是迈不过去,因此blog中也一直更新寥寥。说到积分与微分,这两个本是互逆的东西,但是在复数的统一之下,它们两个去可以相互转化。比如说,薛定谔方程是量子力学的微分形式,而路径积分实际上可以说是量子力学的积分形式,这让我有些想法,是不是任何微分形式的数学都存在一个积分形式的版本呢?如果是,是微分版本优还是积分版本优?

在数学分析中,我们会感觉到求导会比求积分容易很多,求导有现成的公式等等。但是微分有个最大的缺点,它是多分量的,比如,势函数是一个标量,但是微分(求梯度)之后就变成了三分量的矢量(即作用力),多分量事实上是不好处理了,为了处理这类问题,又引入了大量的算符。积分的特点在于它的标量性,也许计算很复杂,但是思想确实容易把握的,我更喜欢积分形式的理论(比如作用量原理、路径积分等。)

说到数学分析中常见而又著名的定积分,不得不提到以下三角函数积分了。
$$\int_0^{\pi/2} \sin^{2n} \theta d\theta$$
不难证明,它也等于
$$\int_0^{\pi/2} \cos^{2n} \theta d\theta$$

点击阅读全文...

24 Dec

用二次方程判别式判断正定矩阵

快要学期末了,不少学霸开始忙碌起来了。不过对非学霸的我来说,基本上每天都是一样的,希望把自己感兴趣的东西深入研究下去,因为我觉得,真正学会点有用的东西才是最重要的。数学分析和高等代数老师都要求写课程论文,我也写了我比较感兴趣的“欧拉数学”和“超复数研究”,之后会把这部分内容与大家分享。

虽然学期已经接近尾声了,但是我们的课程还没有上完。事实上,我们的新课一直上到十八周~随着考试的接近,我们的《高等代数》课程也已经要落幕了。最近在上的是二次型方面的内容,讲到正定二次型和正定矩阵。关于正定矩阵的判别,教科书上提供了两个判别方法,一个是基于定义的初等变换,另外一个就是主子式法。前者无可厚非,但是后者我似乎难以理解——它虽然是正确的,但是它很丑,计算量又大。我还没有想清楚主子式法到底有什么好的?在我看来,本文所探讨的基于二次方程判别式的方法才是简单、快捷的。

正定二次型
所谓正定二次型,就是关于n个变量$x_1,x_2,...,x_n$的二次齐次函数,只要$x_i$不全为0,它的值恒为正数。比如
$$2 x_1^2+x_2^2-2 x_1 x_2=x_1^2+(x_2-x_1)^2$$
这是一个比较简单的正定二次型,多元的还有
$$5 x_1^2+x_2^2+5 x_3^2+4 x_1 x_2-8 x_1 x_3-4 x_2 x_3$$

点击阅读全文...

25 Dec

《新理解矩阵5》:体积=行列式

在文章《新理解矩阵3》:行列式的点滴中,笔者首次谈及到了行列式的几何意义,它代表了n维的“平行多面体”的“体积”。然而,这篇文章写于我初学矩阵之时,有些论述并不严谨,甚至有些错误。最近笔者在写期末论文的时候,研究了超复数的相关内容,而行列式的几何意义在我的超复数研究中具有重要作用,因此把行列式的几何意义重新研究了一翻,修正了部分错误,故发此文,与大家分享。

一个$n$阶矩阵$A$可以看成是$n$个$n$维列向量$\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_n$的集合
$$A=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_n)$$
从代数的角度来看,这构成了一个矩阵;从几何的角度来看,这$n$个向量可以建立一个平行$n$维体。比如:平行四边形就是“平行二维体”,平行六面体就是“平行三维体”,高阶的只需要相应类比,不需要真正想象出高维空间的立体是什么样。

点击阅读全文...

26 Dec

体积与阿达马不等式

阿达马不等式
设有$n$阶实矩阵$\boldsymbol{A}=(a_{ij})_{n\times n}$,那么它的行列式满足阿达马(Hadamard)不等式
$$\begin{equation}
\left(\det \boldsymbol{A}\right)^2 \leq \prod\limits_{i=1}^{n}\left(a_{1i}^2+a_{2i}^2+\dots+a_{ni}^2\right)
\end{equation}$$

这是阿达马在1893年首先发表的。根据体积就是行列式的说法,上述不等式具有相当明显的几何意义。当$n=2$时,它就是说平行四边形的面积不大于两边长的乘积;当$n=3$时,它就是说平行六面体的体积不大于三条棱长的乘积;高维可以类比。这些结论在几何中几乎都是“显然成立”的东西。因此很难理解为什么这个不等式在1893年才被发现。当然,代数不会接受如此笼统的说法,它需要严格的证明。

点击阅读全文...

29 Dec

有质动力:倒立单摆的稳定性

前几天在“宇宙的心弦”浏览网页时,发现他更新了一篇很有趣的文章,叫《倒立单摆的稳定性与Ponderomotive Force》(果然,物理系的能接触到各种各样有趣的现象),里边谈到通过施加一个运动在单摆上面,倒立的单摆也可以是稳定的。这勾起了我的兴趣,遂也计算了一番。

点击阅读全文...

11 Mar

一维弹簧的运动(上)

我们通常用一个波动方程来描述弦的振动,但是,弦的振动是二维的,也就是说,它的“波”是在垂直方向的位移。让我们来考虑一根一端固定的一维理想弹簧,胡克系数为$k$,它的松弛状态是均匀的,线密度是$\rho$,长度是$l$,质量是$m$。

如何弹?
我们要分析这根弹簧的运动,即给定弹簧的初始状态,看弹簧的密度如何变化,这种情况类似于“横波”。但是,弹簧本身是连续介质,这是我们不熟悉的,但是我们可以将它离散化,将它看成无数个小质点的弹簧链。如下图

离散的弹簧

离散的弹簧

点击阅读全文...

4 Mar

平面曲线的曲率的复数表示

开学已经是第二周了,我的《微分几何》也上课两周了,进度比较慢,现在才讲到平面曲线的曲率。在平面曲线$\boldsymbol{t}(t)=(x(t),y(t))$某点上可以找出单位切向量。
$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$
其中$ds^2 =dx^2+dy^2$,将这个向量逆时针旋转90度之后,就可以定义相应的单位法向量$\boldsymbol{n}$,即$\boldsymbol{t}\cdot\boldsymbol{n}=0$。

常规写法

让我们用弧长$s$作为参数来描述曲线方程,$\boldsymbol{t}(s)=(x(s),y(s))$,函数上的一点表示对$s$求导。那么我们来考虑$\dot{\boldsymbol{t}}$,由于$\boldsymbol{t}^2=1$,对s求导得到
$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$

点击阅读全文...

13 Mar

一维弹簧的运动(下)

在上一篇文章中,我们得到了一维弹簧运动的方程
$$m\frac{\partial^2 X}{\partial t^2}=k\frac{\partial^2 X}{\partial \xi^2}$$
并且得到了通解
$$X=F(u)+H(v)=F(\xi+\beta t)+H(\xi-\beta t)$$
或者
$$X(\xi,t)=\frac{1}{2}\left[X_0(\xi+\beta t)+X_0(\xi-\beta t)\right]+\frac{1}{2\beta}\int_{\xi-\beta t}^{\xi+\beta t} X_1 (s)ds$$
在文章的末尾,提到过这个解是有些问题的。现在让我们来详细分析它。

点击阅读全文...