29 Jun

基于Bert的NL2SQL模型:一个简明的Baseline

在之前的文章《当Bert遇上Keras:这可能是Bert最简单的打开姿势》中,我们介绍了基于微调Bert的三个NLP例子,算是体验了一把Bert的强大和Keras的便捷。而在这篇文章中,我们再添一个例子:基于Bert的NL2SQL模型。

NL2SQL的NL也就是Natural Language,所以NL2SQL的意思就是“自然语言转SQL语句”,近年来也颇多研究,它算是人工智能领域中比较实用的一个任务。而笔者做这个模型的契机,则是今年我司举办的首届“中文NL2SQL挑战赛”

首届中文NL2SQL挑战赛,使用金融以及通用领域的表格数据作为数据源,提供在此基础上标注的自然语言与SQL语句的匹配对,希望选手可以利用数据训练出可以准确转换自然语言到SQL的模型。

这个NL2SQL比赛算是今年比较大型的NLP赛事了,赛前投入了颇多人力物力进行宣传推广,比赛的奖金也颇丰富,唯一的问题是NL2SQL本身算是偏冷门的研究领域,所以注定不会太火爆,为此主办方也放出了一个Baseline,基于Pytorch写的,希望能降低大家的入门难度。

抱着“Baseline怎么能少得了Keras版”的心态,我抽时间自己用Keras做了做这个比赛,为了简化模型并且提升效果也加载了预训练的Bert模型,最终形成此文。

点击阅读全文...

20 Aug

开源一版DGCNN阅读理解问答模型(Keras版)

去年写过《基于CNN的阅读理解式问答模型:DGCNN》,介绍了一个纯卷积的简单的问答模型。当时是用Tensorflow实现的,而且没有开源,这几天抽空用Keras复现了一下,决定开源。

模型综述

关于DGCNN的基本介绍,这里不再赘述。本文的模型并不是之前模型的重复实现,而是有所改动,这里只介绍一下被改动的地方。

1、这里放出的模型,线下验证集的分数大概是0.72(之前大约是0.75);

2、本次模型以字为单位,使用笔者之前探索出来的“字词混合Embedding”(之前是以词为单位);

3、本次模型完全去掉了人工特征(之前用了8个人工特征);

4、本次模型去掉了位置Embedding(之前将位置Embedding拼接到输入上);

5、模型架构和训练细节有所微调。

点击阅读全文...

29 Apr

节省显存的重计算技巧也有了Keras版了

不少读者最近可能留意到了公众号文章《BERT重计算:用22.5%的训练时间节省5倍的显存开销(附代码)》,里边介绍了一个叫做“重计算”的技巧,简单来说就是用来省显存的方法,让平均训练速度慢一点,但batch_size可以增大好几倍。该技巧首先发布于论文《Training Deep Nets with Sublinear Memory Cost》,其实在2016年就已经提出了,只不过似乎还没有特别流行起来。

探索

公众号文章提到该技巧在pytorch和paddlepaddle都有原生实现了,但tensorflow还没有。但事实上从tensorflow 1.8开始,tensorflow就已经自带了该功能了,当时被列入了tf.contrib这个子库中,而从tensorflow 1.15开始,它就被内置为tensorflow的主函数之一,那就是tf.recompute_grad

找到tf.recompute_grad之后,笔者就琢磨了一下它的用法,经过一番折腾,最终居然真的成功地用起来了,居然成功地让batch_size从48增加到了144!然而,在继续整理测试的过程中,发现这玩意居然在tensorflow 2.x是失效的...于是再折腾了两天,查找了各种资料并反复调试,最终算是成功地补充了这一缺陷。

最后是笔者自己的开源实现:

该实现已经内置在bert4keras中,使用bert4keras的读者可以升级到最新版本(0.7.5+)来测试该功能。

点击阅读全文...

9 Oct

关于WhiteningBERT原创性的疑问和沟通

在文章《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》中,笔者受到BERT-flow的启发,提出了一种名为BERT-whitening的替代方案,它比BERT-flow更简单,但多数数据集下能取得相近甚至更好的效果,此外它还可以用于对句向量降维以提高检索速度。后来,笔者跟几位合作者一起补充了BERT-whitening的实验,并将其写成了英文论文《Whitening Sentence Representations for Better Semantics and Faster Retrieval》,在今年3月29日发布在Arxiv上。

然而,大约一周后,一篇名为《WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach》的论文 (下面简称WhiteningBERT)出现在Arxiv上,内容跟BERT-whitening高度重合,有读者看到后向我反馈WhiteningBERT抄袭了BERT-whitening。本文跟关心此事的读者汇报一下跟WhiteningBERT的作者之间的沟通结果。

时间节点

首先,回顾一下BERT-whitening的相关时间节点,以帮助大家捋一下事情的发展顺序:

点击阅读全文...

11 Apr

一月份的时候,笔者写了《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》,指出无监督语义相似度的SOTA模型BERT-flow其实可以通过一个简单的线性变换(白化操作,BERT-whitening)达到。随后,我们进一步完善了实验结果,写成了论文《Whitening Sentence Representations for Better Semantics and Faster Retrieval》。这篇博客将对这篇论文的内容做一个基本的梳理,并在5个中文语义相似度任务上进行了补充评测,包含了600多个实验结果。

方法概要

BERT-whitening的思路很简单,就是在得到每个句子的句向量$\{x_i\}_{i=1}^N$后,对这些矩阵进行一个白化(也就是PCA),使得每个维度的均值为0、协方差矩阵为单位阵,然后保留$k$个主成分,流程如下图:

BERT-whitening的基本流程

BERT-whitening的基本流程

点击阅读全文...

18 May

当BERT-whitening引入超参数:总有一款适合你

《你可能不需要BERT-flow:一个线性变换媲美BERT-flow》中,笔者提出了BERT-whitening,验证了一个线性变换就能媲美当时的SOTA方法BERT-flow。此外,BERT-whitening还可以对句向量进行降维,带来更低的内存占用和更快的检索速度。然而,在《无监督语义相似度哪家强?我们做了个比较全面的评测》中我们也发现,whitening操作并非总能带来提升,有些模型本身就很贴合任务(如经过有监督训练的SimBERT),那么额外的whitening操作往往会降低效果。

为了弥补这个不足,本文提出往BERT-whitening中引入了两个超参数,通过调节这两个超参数,我们几乎可以总是获得“降维不掉点”的结果。换句话说,即便是原来加上whitening后效果会下降的任务,如今也有机会在降维的同时获得相近甚至更好的效果了。

方法概要

目前BERT-whitening的流程是:
\begin{equation}\begin{aligned}
\tilde{\boldsymbol{x}}_i =&\, (\boldsymbol{x}_i - \boldsymbol{\mu})\boldsymbol{U}\boldsymbol{\Lambda}^{-1/2} \\
\boldsymbol{\mu} =&\, \frac{1}{N}\sum\limits_{i=1}^N \boldsymbol{x}_i \\
\boldsymbol{\Sigma} =&\, \frac{1}{N}\sum\limits_{i=1}^N (\boldsymbol{x}_i - \boldsymbol{\mu})^{\top}(\boldsymbol{x}_i - \boldsymbol{\mu}) = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top} \,\,(\text{SVD分解})
\end{aligned}\end{equation}

点击阅读全文...

8 Aug

生成扩散模型漫谈(六):一般框架之ODE篇

上一篇文章《生成扩散模型漫谈(五):一般框架之SDE篇》中,我们对宋飏博士的论文《Score-Based Generative Modeling through Stochastic Differential Equations》做了基本的介绍和推导。然而,顾名思义,上一篇文章主要涉及的是原论文中SDE相关的部分,而遗留了被称为“概率流ODE(Probability flow ODE)”的部分内容,所以本文对此做个补充分享。

事实上,遗留的这部分内容在原论文的正文中只占了一小节的篇幅,但我们需要新开一篇文章来介绍它,因为笔者想了很久后发现,该结果的推导还是没办法绕开Fokker-Planck方程,所以我们需要一定的篇幅来介绍Fokker-Planck方程,然后才能请主角ODE登场。

再次反思

我们来大致总结一下上一篇文章的内容:首先,我们通过SDE来定义了一个前向过程(“拆楼”):
\begin{equation}d\boldsymbol{x} = \boldsymbol{f}_t(\boldsymbol{x}) dt + g_t d\boldsymbol{w}\label{eq:sde-forward}\end{equation}

点击阅读全文...

30 Aug

生成扩散模型漫谈(九):条件控制生成结果

前面的几篇文章都是比较偏理论的结果,这篇文章我们来讨论一个比较有实用价值的主题——条件控制生成。

作为生成模型,扩散模型跟VAE、GAN、flow等模型的发展史很相似,都是先出来了无条件生成,然后有条件生成就紧接而来。无条件生成往往是为了探索效果上限,而有条件生成则更多是应用层面的内容,因为它可以实现根据我们的意愿来控制输出结果。从DDPM至今,已经出来了很多条件扩散模型的工作,甚至可以说真正带火了扩散模型的就是条件扩散模型,比如脍炙人口的文生图模型DALL·E 2Imagen

在这篇文章中,我们对条件扩散模型的理论基础做个简单的学习和总结。

技术分析

从方法上来看,条件控制生成的方式分两种:事后修改(Classifier-Guidance)和事前训练(Classifier-Free)。

点击阅读全文...