小时候总是听到“光阴似箭”,却总是觉得时间过得飞快,尤其是放假的时间迟迟不来。而现在,随着年龄的增长,我却发现,想要留住时间,如同抽刀断水一般,无济于事。尤其是美好的时刻,稍瞬即逝。大学,上学、军训的情况依然清晰在目,犹如发生在昨天,而现在已经是寒假了。有时我会怀疑是不是我的记忆力增强了,却发现没有这回事。原来,真相只有一个:光阴似箭!
我不喜欢仔细地规划自己的人生,因为未来太多未知了,也许你今天发现这方面很有趣,明天又会发现另一方面很有趣,所以我只知道我尽力做好当前喜欢做的事情就行。因此,在上大学之前,我也没有对大学想太多。想象中的大学是一个静静自修的教室加上一个丰富的图书馆而已。来到华师,确实有点意外,也有点遗憾,但是,仅此而已。虽然以前努力过要奔向更优秀的大学,但是这已经成为我宝贵的经验。以后在和朋友聊天时,我又多了一个话题。这不得不说是一件很美妙的事情!
费曼积分法(5):欧拉数学的传承
By 苏剑林 | 2013-03-24 | 23418位读者 | 引用在大学第二学期,我们的《数学分析》终于龟速地爬行到了定积分这一章节。对于一些比较复杂的定积分,我总想用自己的方法来解决它,这就重新燃起了我对“费曼积分法——积分符号内取微分”的热情。尤其是我用费曼积分法解决了几道比较有趣复杂的定积分问题时,成就感高涨,遂在此总结,与大家共勉。
这和欧拉数学有什么关系呢?之前已经提到过,欧拉数学是用一种不严谨却极具创造性的方式,给予我们对数学的介乎感性和理性的直观理解。我觉得费曼积分法也属于这个范畴内,它着眼于用一种特殊的视角解决问题,而暂时忽略掉数学严密性。在读费曼的故事中,我感觉到这种思想是贯穿他一生的研究之中的。
本文继续对费曼积分法的研究,得出一些不是很严谨的结论,为以后的应用奠下基础。
一、不成立的函数
首先我们重新考虑$\int_0^{\infty} \frac{\sin x}{x}dx$。这一次我们将它引入复数范畴内,考虑:
$$\int_0^{\infty}\frac{\cos x+i \sin x}{x}dx=\int_0^{\infty}\frac{e^{ix}}{x}dx$$
GELU的两个初等函数近似是怎么来的
By 苏剑林 | 2020-03-26 | 51803位读者 | 引用Transformer升级之路:6、旋转位置编码的完备性分析
By 苏剑林 | 2022-12-28 | 39452位读者 | 引用在去年的文章《Transformer升级之路:2、博采众长的旋转式位置编码》中,笔者提出了旋转位置编码(RoPE),当时的出发点只是觉得用绝对位置来实现相对位置是一件“很好玩的事情”,并没料到其实际效果还相当不错,并为大家所接受,不得不说这真是一个意外之喜。后来,在《Transformer升级之路:4、二维位置的旋转式位置编码》中,笔者讨论了二维形式的RoPE,并研究了用矩阵指数表示的RoPE的一般解。
既然有了一般解,那么自然就会引出一个问题:我们常用的RoPE,只是一个以二维旋转矩阵为基本单元的分块对角矩阵,如果换成一般解,理论上效果会不会更好呢?本文就来回答这个问题。
指数通解
在《Transformer升级之路:4、二维位置的旋转式位置编码》中,我们将RoPE抽象地定义为任意满足下式的方阵
\begin{equation}\boldsymbol{\mathcal{R}}_m^{\top}\boldsymbol{\mathcal{R}}_n=\boldsymbol{\mathcal{R}}_{n-m}\label{eq:re}\end{equation}
最近评论