《向量》系列——4.天旋地转(向量,复数,极坐标)
By 苏剑林 | 2010-08-23 | 40561位读者 | 引用《向量》系列——1.向心力公式证明
By 苏剑林 | 2010-07-15 | 59621位读者 | 引用向量在几何和物理中都有极其重要的作用,现在就让我们来看如何用向量研究物理中的圆周运动。
首先我们必须了解一些基础:
1.在向量中,只要一条“向径”($\vec{r}$)就可以描述出物体的运动,而不需要建立坐标系。这就是向量应用于物理的原因:物理定律不应该依赖于坐标系,而向量恰恰也不依赖于坐标系!
2.牛顿第二定律:$\vec{F}=m\vec{a}$
3.以及一些向量的微积分运算等(可以查阅维基百科或者相关资料)
在下面及以后的文章描述中,为了大家的阅读方便,把向量写成$\vec{r}$的形式,而非把字母加粗。一般情况下,在本站的描述中,有$|\vec{r}|=r,|\dot{\vec{r}}|=v,|\ddot{\vec{r}}|=a$。但是,$\dot{r}=\frac{d|\vec{r}|}{dt} != |\dot{\vec{r}}|$
《向量》系列——2.曲率半径
By 苏剑林 | 2010-07-18 | 56525位读者 | 引用圆周是如此地和谐与完美,致使数学家和物理学家对它钟爱有加。几何上可以把一条曲线的局部看做一个圆弧,利用圆的性质去研究它(在数学上,曲率半径的倒数就是曲率,曲率越大,曲线越弯曲);物理学家喜欢把一个质点的曲线运动轨迹的局部看做圆周运动,利用圆周运动的方法来描述这种运动。这两种研究方法都告诉了我们,两种不同的“线”在极小的范围内可以等效的,这也为我们对科学进行探究提供了一点指导思想:把未知变已知,以已知看未知。物理学和数学的两种处理方法中,有一点是殊途同归的:那就是看轨迹看成一个圆后,圆的半径是多少?我们首先得求出它。
在数学分析上可以利用微积分的相关知识来推导曲率半径公式,而BoJone则更偏爱物理方法,通过物理和向量知识的结合,推导出曲率半径公式,让BoJone感到“别有一番风味”。
《向量》系列——5.平面向量微分方程与复数
By 苏剑林 | 2010-10-03 | 21018位读者 | 引用在上一篇文章中,我们已经得到了电偶极子的等势面和电场线方程,这应该可以让我们对电偶极子的力场情况有个大致的了解了。当然,我们还是希望能够求出在这样的一个受力情况下,一个带电粒子是如何运动的。简单起见,在下面的探讨中,我们假定带电粒子的质量和电荷量均为1,至于电荷的正负,可以通过改变在$U=-\frac{k \cos\theta}{r^2}$中的k值的正负来控制。我们使用的工具依旧是理论力学中的欧拉-拉格朗日方程。
也许不少读者始终对公式感到头疼,更不用说是博大精深的理论力学了。但是请相信我,如果你花一点点心思去弄懂用变分法研究力学(或其他物理系统,但我目前只会用于力学)的基本思路和步骤,那么对你的物理研究是大有裨益的。因为在我眼中,学习了一丁点的理论力学知识后,我看到的只有物理的简洁与和谐。有兴趣的朋友可以看看我的那几篇《自然极值》等相关文章。
首先写出动能的表达式:$T=\frac{1}{2} (\dot{r}^2+r^2 \dot{\theta}^2)$
还有势能:$U=-\frac{k \cos\theta}{r^2}$
《教材如何写》:我们需要怎样的数学教育?
By 苏剑林 | 2011-04-16 | 71228位读者 | 引用转载自:matrix67.com
注:这篇文章里有很多个人观点,带有极强的主观色彩。其中一些思想不见得是正确的,有一些话也是我没有资格说的。我只是想和大家分享一下自己的一些想法。大家记得保留自己的见解。也请大家转载时保留这段话。
我不是一个数学家。我甚至连数学专业的人都不是。我是一个纯粹打酱油的数学爱好者,只是比一般的爱好者更加执着,更加疯狂罢了。初中、高中一路保送,大学不在数学专业,这让我可以不以考试为目的地学习自己感兴趣的数学知识,让我对数学有如此浓厚的兴趣。从 05 年建立这个 Blog 以来,每看到一个惊人的结论或者美妙的证明,我再忙都会花时间把它记录下来,生怕自己忘掉。不过,我深知,这些令人拍案叫绝的雕虫小技其实根本谈不上数学之美,数学真正博大精深的思想我恐怕还不曾有半点体会。
我多次跟人说起,我的人生理想就是,希望有一天能学完数学中的各个分支,然后站在一个至高点,俯瞰整个数学领域,真正体会到数学之美。但是,想要实现这一点是很困难的。最大的困难就是缺少一个学习数学的途径。看课本?这就是我今天想说的——课本极其不靠谱。
《量子力学与路径积分》习题解答V0.5
By 苏剑林 | 2016-04-01 | 36840位读者 | 引用习题解答继续艰难推进中,目前是0.5版本,相比0.4版,跳过了8、9章,先做了第10、11章统计力学部分的习题。
第10章有10道习题,第11章其实没有习题。看上去很少,但其实每一道习题的难度都很大。这两章的主要内容都是在用路径积分方法算统计力学中的配分函数,这本来就是一个很艰辛的课题。加上费曼在书中那形象的描述,容易让读者能够认识到大概,但是却很难算下去。事实上,这一章的习题,我参考了相当多的资料,中文的、英文的都有,才勉强完成了。
虽说是完成,但10道题目中,我只完成了9道,其中问题10-3是有困惑的,我感觉的结果跟费曼给出的不一样,因此就算不下去了。在这里提出来,希望了解的读者赐教。
最近评论