14 Oct

绿色和平:工厂排污36计

绿色和平组织又发来了新消息 ,请大家阅读!

绿色和平组织

绿色和平组织

朋友们,

当“36计”——我国古代的谋略宝典,现在被工厂用在了排放废水、污染江河上,这是怎样的情形呢?我们制作了漫画版的“工厂排污36计”,让你对工厂非法排污的伎俩一览无余。

查看“排污三十六计”漫画系列>>>>

点击阅读全文...

27 Jan

CDS星表库

文章转载于:http://gerry.lamost.org/blog/?p=417

logo_iya2009

logo_iya2009

去年是国际天文年,在翻译官方宣传手册之外,还在朋友们的鼓励下给《天文爱好者》写了一年的连载,介绍著名星表。编辑李鉴给这个系列起了个很棒的名字:“群星的族谱”。前后四五百年,二十多代天文学家,上千个星表,在新线索的串联下,发展脉络清晰可见。我常常因为灵光乍现激动得匆匆提笔,却在下笔的一刻冒出更多的问题……在积累有限之外,自己的笔力也还不足以驾驭这样宏大的题材,就当成框架索引来看好了。虽然遗憾种种,但总算是完成了

一个心愿

。这里是这个系列的番外篇,介绍星表数据库,发表在2010年1月的爱好者杂志上。

讲星表,就不能不提到法国斯特拉斯堡天文数据中心(Strasbourg Astronomical Data Center),这个始建于1972年的数据中心汇集了有文献记载的近万个星表,提供了详尽的查询方式,是天文学家获取数据的首选。而它的身世却少有人知……

点击阅读全文...

27 Feb

丘成桐摘得沃尔夫奖——获数学界终身成就肯定

丘成桐 司徒哲阳摄

丘成桐 司徒哲阳摄

1月31日晚,华裔数学家丘成桐收到以色列教育部部长兼沃尔夫基金会理事长Gideon Sa’ar亲笔签名的信,通知他获得了2010年的沃尔夫数学奖,原因是他“在几何分析方面的贡献已对几何和物理的许多领域产生深远而引人瞩目的影响”。

1978年开始颁发的沃尔夫奖每年评选一次,分别奖励在农业、化学、数学、医药、物理以及艺术领域中取得突出成绩的人士。其中沃尔夫数学奖影响很大。

今年的颁奖典礼定于5月13日在耶路撒冷举行,丘成桐将与美国数学家丹尼斯·沙利文分享10万美元的数学奖奖金。这是丘成桐继菲尔茨奖后,再次获得国际最顶尖的数学大奖。菲尔茨奖和沃尔夫奖双奖得主,迄今只有13位。

点击阅读全文...

27 Jul

科学空间:2011年8月重要天象

夏秋之交的八月,天象剧场依然是精彩纷呈。其中最受关注的要属英仙座流星雨,这也是天文爱好者每年最热衷观测的项目。虽然几颗较亮的行星在本月观测条件都较为一般,但海王星将在8月23日冲日,有兴趣的朋友可以借助望远统来对它进行观测。而小有名气的45P/Honda-Mrkos-Pajdusakovva彗星也将在8月16日过近地点逐渐进入较佳的观测时段。

点击阅读全文...

25 Dec

矩阵化简二次型(无穷小近似处理抛物型)

(阅读本文最好有一定的线性代数基础,至少对线性代数里边的基本概念有所了解。)

这学期已经接近尾声了,我们的《解析几何》已经讲到化简二次曲线了。可是,对于没有线性代数的其他同学们,直接用转轴和移轴这个计算公式来变换,那计算量会让我们很崩溃的;虽然那个“不变量”方法计算上有些简单,却总让人感到很诡异,总觉得不知从何而来,而且又要记一堆公式。事实上,如果有线性代数的基础,这些东西变得相当好理解的。我追求用统一的方法求解同一种问题,即用统一的方式处理所有的二次型,当然也希望计算量简单一点。

一般的模型

一般的二次型可以写成
$$x^T A x + 2 b^T x + c=0$$

其中$x,b$都是n维列向量(各元素为$x_i$和$b_i$),A是n阶方阵(各元素为$a_{ij}$),c是常数。在这里,我们只讨论n=2和n=3的情况。化简二次型的过程,可以归结为A矩阵的简化。

点击阅读全文...

27 Mar

费曼积分法(7):欧拉数学的综合

在本系列的第五篇文章中,BoJone导出了一些看似不合理的公式,而且并没有说明它的应用和来源。其实,这些都是我在研究以下积分的时候总结出来的:

$$\int_{-\infty}^{+\infty} \frac{\cos x}{a^2+x^2}dx$$

点击阅读全文...

26 Nov

求解微分方程的李对称方法(二)

由于重装系统时的粗心大意,笔者把《求解微分方程的李对称方法》的Word文档弄丢了,更不幸的是存有该文档的U盘也弄丢了~没办法,只好重新把这篇文章录入了。幸好之前曾把它打印成纸质版,还有旧稿可以参考。现发布《求解微分方程的李对称方法(二)》,希望能够为对李对称方法有兴趣的朋友提供些许资源。

相比(一),(二)将所有内容重新用CTex录入了,果然,$\LaTeX$才是写数学论文软件中的佼佼者,虽然是纯代码编辑,但是这正符合我追求简洁清晰的风格。在内容上,(二)增加了一阶常微分方程组的内容,并对(一)的部分细节做了修改,本文完成后就初步相对完整地叙述了一阶常微分方程组的李对称积分的思路,内容增加到了13页。而在接下来的(三)中,将会提供李代数的内容;如果有(四)的话,就会谈到李对称方法的计算机实现。希望大家会喜欢这系列文章。更期待大家的读后感(包括挑错)^_^

点击阅读全文...

12 Feb

漫谈几何量子化

在查找量子化有关资料的时候,笔者查找到了一系列名为《漫谈几何量子化》的文章,并进一步查询得知,作者为季候风,原来发表在繁星客栈(顺便提一下,繁星客栈是最早的理论物理论坛之一,现在已经不能发帖了,但是上面很多资料都弥足珍贵),据说这是除正则量子化和路径积分量子化外的第三种量子化方法。网上鲜有几何量子化的资料,更不用说是中文资料了,于是季候风前辈的这一十五篇文章便显得格外有意义了。

然而,虽然不少网站都转载了这系列文章,但是无一例外地,文章中的公式图片已经失效了,后来笔者在百度网盘那找到其中的十四篇pdf格式的(估计是网友在公式图片失效前保存下来的),笔者通过替换公式服务器的方式找回了第十五篇,把第十五篇也补充进去了。(见漫谈几何量子化(原文档).zip

虽然这样已经面前能够阅读了,但是总感觉美中不足,虽然笔者花了三天时间把文章重新用$\LaTeX$录入了,主要是把公式重新录入了,简单地排版了一下。现放出来与大家分享。

点击阅读全文...