高斯型积分的微扰展开(二)
By 苏剑林 | 2015-03-07 | 24306位读者 | 引用为什么第二篇姗姗来迟?
其实要写这系列之前,我已经构思好了接下来几篇的内容,本来想要自信地介绍自己想到的一些积分展开的技巧;而且摄动法我本身就比较熟悉,所以正常来说不会这么迟才有第二篇。然而,在我写完第一篇,准备写第二篇的期间,我看到了知乎上的这篇回复:
http://www.zhihu.com/question/24735673
这篇文章大大地拓展了我对级数的认识。里边谈及到了积分的展开是一个渐近级数。这让我犹豫了,怀疑这系列有没有价值,因为渐近级数意味着不管怎样的展开技巧,得到的级数收敛半径都是0。
后来再想想,就算是渐近级数,也有改进的空间,有加速收敛的方法,所以我想我这几篇文章,应该还有一点点意义吧,还可以顺便介绍一下渐近级数和奇点的相关理论。嗯,就这么办吧。
费曼积分法(7):欧拉数学的综合
By 苏剑林 | 2013-03-27 | 37849位读者 | 引用传说费曼讲课很精彩,但他是上个世纪的人,所以也就没有多少视频保留下来。但是网上还是存有一些,有兴趣的读者可以收藏。
费曼讲座——光、电子、路径积分(无字幕)
http://v.youku.com/v_show/id_XNjAyMzU4ODg=.html
http://v.youku.com/v_show/id_XNjAyMzQ4NzI=.html
http://v.youku.com/v_show/id_XNTQzMTEyNTA4.html
求解微分方程的李对称方法(二)
By 苏剑林 | 2013-11-26 | 24417位读者 | 引用由于重装系统时的粗心大意,笔者把《求解微分方程的李对称方法》的Word文档弄丢了,更不幸的是存有该文档的U盘也弄丢了~没办法,只好重新把这篇文章录入了。幸好之前曾把它打印成纸质版,还有旧稿可以参考。现发布《求解微分方程的李对称方法(二)》,希望能够为对李对称方法有兴趣的朋友提供些许资源。
相比(一),(二)将所有内容重新用CTex录入了,果然,$\LaTeX$才是写数学论文软件中的佼佼者,虽然是纯代码编辑,但是这正符合我追求简洁清晰的风格。在内容上,(二)增加了一阶常微分方程组的内容,并对(一)的部分细节做了修改,本文完成后就初步相对完整地叙述了一阶常微分方程组的李对称积分的思路,内容增加到了13页。而在接下来的(三)中,将会提供李代数的内容;如果有(四)的话,就会谈到李对称方法的计算机实现。希望大家会喜欢这系列文章。更期待大家的读后感(包括挑错)^_^
在查找量子化有关资料的时候,笔者查找到了一系列名为《漫谈几何量子化》的文章,并进一步查询得知,作者为季候风,原来发表在繁星客栈(顺便提一下,繁星客栈是最早的理论物理论坛之一,现在已经不能发帖了,但是上面很多资料都弥足珍贵),据说这是除正则量子化和路径积分量子化外的第三种量子化方法。网上鲜有几何量子化的资料,更不用说是中文资料了,于是季候风前辈的这一十五篇文章便显得格外有意义了。
然而,虽然不少网站都转载了这系列文章,但是无一例外地,文章中的公式图片已经失效了,后来笔者在百度网盘那找到其中的十四篇pdf格式的(估计是网友在公式图片失效前保存下来的),笔者通过替换公式服务器的方式找回了第十五篇,把第十五篇也补充进去了。(见漫谈几何量子化(原文档).zip)
虽然这样已经面前能够阅读了,但是总感觉美中不足,虽然笔者花了三天时间把文章重新用$\LaTeX$录入了,主要是把公式重新录入了,简单地排版了一下。现放出来与大家分享。
从费马大定理谈起(一):背景简介
By 苏剑林 | 2014-08-15 | 29049位读者 | 引用费马大定理,也叫做费马最后定理(Fermat Last Theorem),说的是
设$n$是大于2的正整数,则不定方程$x^n+y^n=z^n$没有全不为0的整数解。
稍微阅读过数学史的朋友应该知道,该定理首先于1637年由法国业余数学家费马(Pierre de Fermat)在阅读丢番图《算术》拉丁文译本时写在第11卷第8命题旁写道。他并附加道:“我发现了一个非常漂亮的证明,但这里没有足够的空间可容纳得下。”根据后世的考证,费马或许有办法证明n=3,4,5的情形,但不大可能给出一般性的证明,因为在20世纪90年代,怀尔斯用了130页的纸张,而且用到了复杂的现代理论,才完全证明了费马大定理。所以费马当时的这一断言,更可能只是一个归纳猜测。
强大的整数数列网站OEIS
By 苏剑林 | 2014-07-17 | 39798位读者 | 引用OEIS?:http://oeis.org/
近段时间在研究解析数论,进一步感觉数论真是个奇妙的东西,通过它,似乎数学的各个方面——离散的和连续的,实数的和复数的,甚至物理的——都联系了起来。由此也不难体会到当初高斯(Gauss)会说“数学是科学的皇后,数论是数学的皇后。”了。今天,由于在研究素数的个数的上下界问题时,需要思考组合数
$$C_{n}^{2n}=\binom{2n}{n}=\frac{(2n)!}{n!\ n!}$$
最多能被2的多少次方整除。直觉告诉我,次数应该是随着$n$的增大而增大的,但事实却不是,比如$C_{15}^{30}$能够被16整除,但是$C_{20}^{40}$却最多只能被4整除,有种毫无规律的感觉,于是到群里问问各大神。其中,wayne提出
这个可以写个小程序算出一些数据,再在oeis上搜搜
从费马大定理谈起(九):n=3
By 苏剑林 | 2014-09-01 | 30300位读者 | 引用现在可以开始$n=3$的证明了。在实整数范围内n=3的证明看起来相当复杂,而且跟n=4的证明似乎没有相通之处。然而,如果我们在$\mathbb{Z}[\omega]$中考虑$x^3+y^3+z^3=0$无解的证明,就会跟n=4时有很多类似的地方,而且事实上证明比n=4时简单(要注意在实整数范围内的证明,n=4比n=3简单。费马完成了n=4的证明,但是没完成n=3的证明。)。我想,正是这样的类似之处,才让当初还没有完成证明的数学家拉梅就自信他从这条路可以完成费马大定理的证明。(不过,这自信却是失败的案例:拉梅的路不能完全走通,而沿着这条路走得更远的当属库默,但即便这样,库默也没有证明费马大定理。)
证明跟$n=4$的第二个证明是类似的。我们先往方程中添加一个单位数,然后证明无论单位数是什么,方程在$\mathbb{Z}[\omega]$中都无解。这是一个很妙的技巧,让我们证明了更多的方程无解,但是却用到了更少的步骤。事实上,存在着只证明$x^3+y^3+z^3=0$无解的证明,但需要非常仔细地分析里边的单位数情况,这是相当麻烦的。本证明是我参考了Fermats last theorem blogspot上的证明,然后结合本系列n=4的第二个证明,简化而来,主要是减少了对单位数的仔细分析。
最近评论