鬼斧神工:求n维球的体积
By 苏剑林 | 2014-12-23 | 115466位读者 | 引用今天早上同学问了我有关伽马函数和$n$维空间的球体积之间的关系,我记得我以前想要研究,但是并没有落实。既然她提问了,那么就完成这未完成的计划吧。
标准思路
简单来说,$n$维球体积就是如下$n$重积分
$$V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}dx_1 dx_2\dots dx_n$$
用更加几何的思路,我们通过一组平行面($n-1$维的平行面)分割,使得$n$维球分解为一系列近似小柱体,因此,可以得到递推公式
$$V_n (r)=\int_{-r}^r V_{n-1} \left(\sqrt{r^2-t^2}\right)dt$$
设$t=r\sin\theta_1$,就有
$$V_n (r)=r\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-1} \left(r\cos\theta_1\right)\cos\theta_1 d\theta_1$$
当概率遇上复变:从二项分布到泊松分布
By 苏剑林 | 2015-01-13 | 25733位读者 | 引用泊松分布,适合于描述单位时间内随机事件发生的次数的概率分布,如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数等。[维基百科]泊松分布也可以作为小概率的二项分布的近似,其推导过程在一般的概率论教材都会讲到。可是一般教材上给出的证明并不是那么让人赏心悦目,如《概率论与数理统计教程》(第二版,茆诗松等编)的第98页就给出的证明过程。那么,哪个证明过程才更让人点赞呢?我认为是利用母函数的证明。
二项分布的母函数为
$$\begin{equation}(q+px)^n,\quad q=1-p\end{equation}$$
有趣的求极限题:随心所欲的放缩
By 苏剑林 | 2015-03-28 | 46903位读者 | 引用昨天一好友问我以下题目,求证:
$$\lim_{n\to\infty} \frac{1^n + 2^n +\dots + n^n}{n^n}=\frac{e}{e-1}$$
将解答过程简单记录一下。
求解
首先可以注意到,当$n$充分大时,
$$\frac{1^n + 2^n +\dots + n^n}{n^n}=\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n$$
的主要项都集中在最后面那几项,因此,可以把它倒过来计算
$$\begin{aligned}\frac{1^n + 2^n +\dots + n^n}{n^n}=&\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n\\
=&\left(\frac{n}{n}\right)^n+\dots+\left(\frac{2}{n}\right)^n+\left(\frac{1}{n}\right)^n\end{aligned}$$
海伦公式的一个别致的物理推导
By 苏剑林 | 2015-03-27 | 54093位读者 | 引用海伦公式是已知三角形三边的长度$a,b,c$来求面积$S$的公式,是一个相当漂亮的公式,它不算复杂,同时它关于$a,b,c$是对称的,充分体现了三边的同等地位。可是,这样具有对称美的公式推导,往往要经过一个不对称的过程,比如维基百科上的证明,这未免有点美中不足。本文的目的,就是想为此补充一个对称的推导。本文题目为“物理推导”,关键在于“推导”而不是“证明”,同时这里的“物理”并非是通过物理类比而来,而是推导的思想和方法很具有“物理味道”。
$$\sqrt{p(p-a)(p-b)(p-c)}$$
在推导开始之前,笔者给出一个评论:海伦公式似乎是由三边长求三角形面积的所有可能的公式之中最简单的一个。
从Knotsevich在黑板上写的级数题目谈起
By 苏剑林 | 2015-02-27 | 31244位读者 | 引用你所没有思考过的平行线问题
By 苏剑林 | 2015-03-17 | 37258位读者 | 引用本文的主题是平行线,了解数学的朋友可能会想我会写有关非欧几何的内容。但这次不是,本文的内容纯粹是我们从小就开始学习的欧氏几何,基于“欧几里得第五公设”(又称平行公设)。但即便是从小就学习的欧氏几何中的平行线,也许里边的很多问题我们都没有思考清楚。因为平行是几何中非常基本的情形,因此,在讨论这种基本命题的时候,相当容易会出现循环论证、甚至本末倒置的情况。
我们从初中开始就被灌输“同位角相等,两直线平行”、“内错角相等,两直线平行”之类的平行线判断法则,当然,还少不了的是“过直线外一点只能作一条直线与已知直线平行”。但是,这些内容之中,有多少是基本的公理,有多少是可以证明的,该如何证明,我想很多人都理解不清楚,我自己也没有一个很好的答案。那些在初中教授平行线的老师们,估计也没多少个能够把它说清楚的。后来我发现,我居然不会证明“同位角相等,两直线平行”,“欧几里得第五公设”好像并没有告诉我们这个判定法则呀。于是,我翻看了一下初中的数学教科书,发现原来当初“同位角相等,两直线平行”这一判定法则是不加证明地让我们接受的,无怪乎我怎么也想不到关于这一法则的简单的证明...
于是,我想写这篇文章,为大家理解平行线的整个逻辑提供一点参考。
胡闹的胜利:将算子引入级数求和
By 苏剑林 | 2015-05-26 | 24774位读者 | 引用在文章《有趣的求极限题:随心所欲的放缩》中,读者“最近倒了”提出了一个新颖的解法,然而这位读者写得并非特别清晰,更重要的是里边的某些技巧似乎是笔者以前没有见过的,于是自行分析了一番,给出了以下解释。
胡闹的结果
假如我们要求级数和
$$\sum_{k=0}^n \binom{n}{k}\frac{A_k}{n^k}$$
这里$A_0=1$。一般而言,我们用下标来标注不同的数,如上式的$A_k,\,k=0,1,2,\dots$,可是有的人偏不喜欢,他们更喜欢用上标来表示数列中的各项,他们把上面的级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}$$
可能读者就会反对了:这不是胡闹吗,这不是让它跟分母的n的k次幂混淆了吗?可是那人干脆更胡闹一些,把级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}=\left(1+\frac{A}{n}\right)^n$$
看清楚了吧?他干脆把$A$当作一个数来处理了!太胡闹了,$A$是个什么东西?估计这样的孩子要被老师赶出课堂的了。
可是换个角度想想,似乎未尝不可。
用Pandas实现高效的Apriori算法
By 苏剑林 | 2015-07-02 | 148831位读者 | 引用最近在做数据挖掘相关的工作,阅读到了Apriori算法。平时由于没有涉及到相关领域,因此对Apriori算法并不了解,而如今工作上遇到了,就不得不认真学习一下了。Apriori算法是一个寻找关联规则的算法,也就是从一大批数据中找到可能的逻辑,比如“条件A+条件B”很有可能推出“条件C”(A+B-->C),这就是一个关联规则。具体来讲,比如客户买了A商品后,往往会买B商品(反之,买了B商品不一定会买A商品),或者更复杂的,买了A、B两种商品的客户,很有可能会再买C商品(反之也不一定)。有了这些信息,我们就可以把一些商品组合销售,以获得更高的收益。而寻求关联规则的算法,就是关联分析算法。
啤酒与尿布
关联算法的案例中,最为人老生常谈的应该是“啤酒与尿布”了。“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,超市管理人员发现“啤酒与尿布两件看上去毫无关系的商品会经常出现在同一个购物篮中”。经过分析,原来在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。因此,沃尔玛尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品。事实是效果相当不错!
最近评论