[备份]全国大学生数学建模竞赛论文LaTex模板
By 苏剑林 | 2014-09-11 | 41298位读者 | 引用变分自编码器(五):VAE + BN = 更好的VAE
By 苏剑林 | 2020-05-06 | 219963位读者 | 引用本文我们继续之前的变分自编码器系列,分析一下如何防止NLP中的VAE模型出现“KL散度消失(KL Vanishing)”现象。本文受到参考文献是ACL 2020的论文《A Batch Normalized Inference Network Keeps the KL Vanishing Away》的启发,并自行做了进一步的完善。
值得一提的是,本文最后得到的方案还是颇为简洁的——只需往编码输出加入BN(Batch Normalization),然后加个简单的scale——但确实很有效,因此值得正在研究相关问题的读者一试。同时,相关结论也适用于一般的VAE模型(包括CV的),如果按照笔者的看法,它甚至可以作为VAE模型的“标配”。
最后,要提醒读者这算是一篇VAE的进阶论文,所以请读者对VAE有一定了解后再来阅读本文。
VAE简单回顾
这里我们简单回顾一下VAE模型,并且讨论一下VAE在NLP中所遇到的困难。关于VAE的更详细介绍,请读者参考笔者的旧作《变分自编码器(一):原来是这么一回事》、《变分自编码器(二):从贝叶斯观点出发》等。
VAE的训练流程
VAE的训练流程大概可以图示为
在Python中使用GMP(gmpy2)
By 苏剑林 | 2014-10-28 | 69734位读者 | 引用之前笔者曾写过《初试在Python中使用PARI/GP》,简单介绍了一下在Python中调用PARI/GP的方法。PARI/GP是一个比较强大的数论库,“针对数论中的快速计算(大数分解,代数数论,椭圆曲线...)而设计”,它既可以被C/C++或Python之类的编程语言调用,而且它本身又是一种自成一体的脚本语言。而如果仅仅需要高精度的大数运算功能,那么GMP似乎更满足我们的需求。
了解C/C++的读者都会知道GMP(全称是GNU Multiple Precision Arithmetic Library,即GNU高精度算术运算库),它是一个开源的高精度运算库,其中不但有普通的整数、实数、浮点数的高精度运算,还有随机数生成,尤其是提供了非常完备的数论中的运算接口,比如Miller-Rabin素数测试算法、大素数生成、欧几里德算法、求域中元素的逆、Jacobi符号、legendre符号等[来源]。虽然在C/C++中调用GMP并不算复杂,但是如果能在以高开发效率著称的Python中使用GMP,那么无疑是一件快事。这正是本文要说的gmpy2。
只有两个四阶群和六阶群
By 苏剑林 | 2014-10-30 | 75684位读者 | 引用我们上近世代数课的时候,老师谈到在同构意义之下只有两个不同的四阶群,六阶群也是只有两个,还说到这是代数的研究生入学考试题目。说到这样了,我就饶有兴致地研究了一下,发现只有两个互不同构的四阶群这几乎是显然的,感觉这题用来做研究生考试题太水了吧?接着分析了一下六阶的情况,发现复杂了不少(元素增加)。而今天在实变函数课的时候,想到了一个简化的技巧,遂也证明了只有两个互不同构的六阶群。把结果和研究过程贴在这里,与大家分享。
两个四阶群
不管是四阶群还是六阶群,它们都是有限群。有限群的一个特点就是,可以把它们的乘法表写出来(只要不怕麻烦~~)。既然要研究四阶群的数目,我们只需要列出四阶群的乘法表就行了。设四阶群为$G_4=\{e, a, b, c\}$,其中$e$是单位元,根据这些信息,我们至少可以写出乘法表的一部分:
$$\begin{array}{c|cccc}
\cdot & e & a & b & c \\
\hline
e & e &a &b &c \\
a & a & & & \\
b & b & & & \\
c & c & & & \end{array}$$
特殊的通项公式:二次非线性递推
By 苏剑林 | 2014-11-12 | 65102位读者 | 引用特殊的通项公式
对数学或编程感兴趣的读者,相信都已经很熟悉斐波那契数列了
0, 1, 1, 2, 3, 5, 8, 13, ...
它是由
$$a_{n+2}=a_{n+1}+a_n,\quad a_0=0,a_1=1$$
递推所得。读者或许已经见过它的通项公式
$$a_{n}=\frac{\sqrt{5}}{5} \cdot \left[\left(\frac{1 + \sqrt{5}}{2}\right)^{n} - \left(\frac{1 - \sqrt{5}}{2}\right)^{n}\right]$$
这里假设我们没有如此高的智商可以求出这个复杂的表达式出来,但是我们通过研究数列发现,这个数列越来越大时,相邻两项趋于一个常数,这个常数也就是(假设我们只发现了后面的数值,并没有前面的根式)
$$\beta=\frac{1 + \sqrt{5}}{2}=1.61803398\dots$$
[转载] 做数学一定要是天才吗?
By 苏剑林 | 2014-11-17 | 30205位读者 | 引用(译自 陶哲轩 博客, 译者 liuxiaochuang)
(英文原文:Does one have to be a genius to do maths?)
这个问题的回答是一个大写的:不!为了达到对数学有一个良好的,有意义的贡献的目的,人们必须要刻苦努力;学好自己的领域,掌握一些其他领域的知识和工具;多问问题;多与其他数学工作者交流;要对数学有个宏观的把握。当然,一定水平的才智,耐心的要求,以及心智上的成熟性是必须的。但是,数学工作者绝不需要什么神奇的“天才”的基因,什么天生的洞察能力;不需要什么超自然的能力使自己总有灵感去出人意料的解决难题。
大众对数学家的形象有一个错误的认识:这些人似乎都使孤单离群的(甚至有一点疯癫)天才。他们不去关注其他同行的工作,不按常规的方式思考。他们总是能够获得无法解释的灵感(或者经过痛苦的挣扎之后突然获得),然后在所有的专家都一筹莫展的时候,在某个重大的问题上取得了突破的进展。这样浪漫的形象真够吸引人的,可是至少在现代数学学科中,这样的人或事是基本没有的。在数学中,我们的确有很多惊人的结论,深刻的定理,但是那都是经过几年,几十年,甚至几个世纪的积累,在很多优秀的或者伟大的数学家的努力之下一点一点得到的。每次从一个层次到另一个层次的理解加深的确都很不平凡,有些甚至是非常的出人意料。但尽管如此,这些成就也无不例外的建立在前人工作的基础之上,并不是全新的。(例如, Wiles 解决费马最后定理的工作,或者Perelman 解决庞加莱猜想的工作。)
迟到一年的建模:再探碎纸复原
By 苏剑林 | 2014-12-18 | 87675位读者 | 引用前言:一年前国赛的时候,很初级地做了一下B题,做完之后还写了个《碎纸复原:一个人的数学建模》。当时就是对题目很有兴趣,然后通过一天的学习,基本完成了附件一二的代码,对附件三也只是有个概念。而今年我们上的数学建模课,老师把这道题作为大作业让我们做,于是我便再拾起了一年前的那份激情,继续那未完成的一个人的数学建模...
与去年不同的是,这次将所有代码用Python实现了,更简洁,更清晰,甚至可能更高效~~以下是论文全文。
研究背景
2011年10月29日,美国国防部高级研究计划局(DARPA)宣布了一场碎纸复原挑战赛(Shredder Challenge),旨在寻找到高效有效的算法,对碎纸机处理后的碎纸屑进行复原。[1]该竞赛吸引了全美9000支参赛队伍参与角逐,经过一个多月的时间,有一支队伍成功完成了官方的题目。
近年来,碎纸复原技术日益受到重视,它显示了在碎片中“还原真相”的可能性,表明我们可以从一些破碎的片段中“解密”出原始信息来。另一方面,该技术也和照片处理领域中的“全景图拼接技术”有一定联系,该技术是指通过若干张不同侧面的照片,合成一张完整的全景图。因此,分析研究碎纸复原技术,有着重要的意义。
最近评论