Project Euler 454 :五天攻下“擂台”
By 苏剑林 | 2014-06-27 | 29342位读者 | 引用进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目:
设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。
这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~
上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。
线性微分方程组:已知特解求通解
By 苏剑林 | 2014-06-18 | 38325位读者 | 引用含有$n$个一阶常微分方程的一阶常微分方程组
$$\dot{\boldsymbol{x}}=\boldsymbol{A}\boldsymbol{x}$$
其中$\boldsymbol{x}=(x_1(t),\dots,x_n(t))^{T}$为待求函数,而$\boldsymbol{A}=(a_{ij}(t))_{n\times n}$为已知的函数矩阵。现在已知该方程组的$n-1$个线性无关的特解$\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_{n-1}$(解的列向量),求方程的通解。
这是我的一位同学在6月5号问我的一道题目,我当时看了一下,感觉可以通过李对称的方法很容易把解构造出来,当晚就简单分析了一下,发现根据李对称的思想,由上面已知的信息确实足以把通解构造出来。但是我尝试了好几天,尝试了几何、代数等思想,都没有很好地构造出相应的正则变量出来,从而也没有写出它的显式解,于是就搁置下来了。今天再分析这道题目时,竟在无意之间构造出了让我比较满意的解来~
用PyPy提高Python脚本执行效率
By 苏剑林 | 2014-06-11 | 23903位读者 | 引用在《两百万前素数之和与前两百万素数之和》中,我们用Python求了前两百万的素数和以及两百万前的素数和,并且得到了在Python 3.3中的执行时间如下:
两百万前的素数之和:
142913828922
time: 2.4048174478605646前两百万的素数之和:
31381137530481
time: 46.75734807838953
于是想办法提高python脚本的执行效率,我觉得在算法方面,优化空间已经比较小了,于是考虑执行器上的优化。在搜索的无意间我看到了一个名词——Psyco!这是python的一个外部模块,导入后可以加快.py脚本的执行。网上也有《用 Psyco 让 Python 运行得像 C一样快》、《利用 psyco 让 Python 程序执行更快》之类的文章,说明Psyco确实是一个可行的选择,于是就跃跃欲试了,后来了解到Psyco在2012年已经停止开发,只支持到Python 2.4版本,目前它由 PyPy所接替。于是我就下载了PyPy。
两百万前素数之和与前两百万素数之和
By 苏剑林 | 2014-06-10 | 72296位读者 | 引用当概率遇上复变:随机游走与路径积分
By 苏剑林 | 2014-06-04 | 24108位读者 | 引用我们在上一篇文章中已经看到,随机游走的概率分布是正态的,而在概率论中可以了解到正态分布(几乎)是最重要的一种分布了。随机游走模型和正态分布的应用都很广,我们或许可以思考一个问题,究竟是随机游走造就了正态分布,还是正态分布造就了随机游走?换句话说,哪个更本质些?个人就自己目前所阅读到的内容来看,随机游走更本质些,随机游走正好对应着普遍存在的随机不确定性(比如每次测量的误差),它的分布正好就是正态分布,所以正态分布才应用得如此广泛——因为随机不确定性无处不在。
下面我们来考虑随机游走的另外一种描述方式,原则上来说,它更广泛,更深刻,其大名曰“路径积分”。
当概率遇上复变:随机游走基本公式
By 苏剑林 | 2014-04-30 | 61694位读者 | 引用傅里叶变换:只需要异想天开?
By 苏剑林 | 2014-04-25 | 45062位读者 | 引用在对数学或物理进行事后分析,往往会发现一些奇怪的现象,也有可能得到一些更为深刻有趣的结果。比如本文所要谈及的傅里叶变换,可以由一种“异想天开”的思路得来。
洛朗展式
我们知道,在原点处形态良好的函数,可以展开为泰勒级数
$$f(x)=\sum_{n=0}^{\infty}a_n x^n$$
我们发现,上面的幂都是正的,为什么不能包含$x$的负数次幂呢?比如$\frac{\sin z}{z^2}$展开为
$$\frac{1}{z}-\frac{z}{6}+\frac{z^3}{120}\dots$$
显然也是一件合理的事情。于是,结合复变函数,我们得到解析函数的洛朗展式
$$f(z)=\sum_{n=-\infty}^{+\infty}a_n z^n$$
这是函数的双边展开。其中
当概率遇上复变:解析概率
By 苏剑林 | 2014-04-25 | 28991位读者 | 引用每当看到数学的两个看似毫不相关的分支巧妙地联系了起来时,我总会为数学的神奇美丽惊叹不已。在很久以前,当我看到通过生成函数法把数论问题与复变函数方法结合起来,衍生出一门奇妙的“解析数论”时,我就惊叹过生成函数法的漂亮!可惜,一直都没有好好写整理这些内容。今天,当我在看李政道先生的《物理学中的数学方法》时,看到他把复变函数跟随机游动如鬼斧神工般了起来,再次让我拍案叫绝。最后实在压抑不住心中的激动,在此写写概率论和生成函数的事情。
数论与复变函数结合,就生成了一门“解析数论”,按照这个说法,概率与复变函数结合,应该就会有一门“解析概率”,但是我在网上搜索的时候,并没有发现这个名词的存在。经过如此,本文还是试用了这个名词。虽然这个名词没有流行,但事实上,解析概率的方法并不算新,它可以追溯到伟大的数学家拉普拉斯以及他的著作《分析概率论》中。尽管如此,这种巧妙漂亮的方法似乎没有得到大家应该有的充分的认识。
我觉得,即使作为一个简洁的计算工具,生成函数法这个美丽的技巧,也应该尽可能为科学爱好者所知,更不用说数学专业的朋友了。
最近评论