21 Jul

从“0.999...等于1”说开来

从小学到大学都可能被问到的但却又不容易很好地回答的问题中,“0.999...究竟等不等于1”肯定也算是相当经典的一个。然而,要清楚地回答这个问题并不容易,很多时候被提问者都会不自觉地弄晕,甚至有些“民科”还以这个问题“创造了新数学”。

本文试图就这个问题,给出比较通俗但比较严谨的回答。

什么是相等?

要回答0.999...等不等于1,首先得定义“相等”!什么才算相等?难道真的要写出来一模一样才叫相等吗?如果是这样的话,那么2-1都不等于1了,因为2-1跟1看起来都不一样啊。

显然我们需要给“相等”做出比较严格但是又让人公认的定义,才能对相等进行判断,显然,下面的定义是能够让很多人接受的:

$a = b$等切仅当$|a-b|=0$。

点击阅读全文...

26 May

胡闹的胜利:将算子引入级数求和

在文章《有趣的求极限题:随心所欲的放缩》中,读者“最近倒了”提出了一个新颖的解法,然而这位读者写得并非特别清晰,更重要的是里边的某些技巧似乎是笔者以前没有见过的,于是自行分析了一番,给出了以下解释。

胡闹的结果

假如我们要求级数和
$$\sum_{k=0}^n \binom{n}{k}\frac{A_k}{n^k}$$
这里$A_0=1$。一般而言,我们用下标来标注不同的数,如上式的$A_k,\,k=0,1,2,\dots$,可是有的人偏不喜欢,他们更喜欢用上标来表示数列中的各项,他们把上面的级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}$$
可能读者就会反对了:这不是胡闹吗,这不是让它跟分母的n的k次幂混淆了吗?可是那人干脆更胡闹一些,把级数写成
$$\sum_{k=0}^n \binom{n}{k}\frac{A^k}{n^k}=\left(1+\frac{A}{n}\right)^n$$
看清楚了吧?他干脆把$A$当作一个数来处理了!太胡闹了,$A$是个什么东西?估计这样的孩子要被老师赶出课堂的了。

可是换个角度想想,似乎未尝不可。

点击阅读全文...

2 May

寻求一个光滑的最大值函数

在最优化问题中,求一个函数的最大值或最小值,最直接的方法是求导,然后比较各阶极值的大小。然而,我们所要优化的函数往往不一定可导,比如函数中含有最大值函数$\max(x,y)$的。这时候就得求助于其他思路了。有一个很巧妙的思路是,将这些不可导函数用一个可导的函数来近似它,从而我们用求极值的方法来求出它近似的最优值。本文的任务,就是探究一个简单而有用的函数,它能够作为最大值函数的近似,并且具有多阶导数。下面是笔者给出的一个推导过程。

在数学分析中,笔者已经学习过一个关于最大值函数的公式,即当$x \geq 0, y \geq 0$时,我们有
$$\max(x,y)=\frac{1}{2}\left(|x+y|+|x-y|\right)\tag{1}$$
那么,为了寻求一个最大值的函数,我们首先可以考虑寻找一个能够近似表示绝对值$|x|$的函数,这样我们就把问题从二维降低到一维了。那么,哪个函数可以使用呢?

点击阅读全文...

26 Apr

高斯型积分的微扰展开(三)

换一个小参数

比较《高斯型积分的微扰展开(一)》《高斯型积分的微扰展开(二)》两篇文章,我们可以得出关于积分
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\tag{1}$$
的两个结论:第一,我们发现类似$(4)$式的近似结果具有良好的性质,对任意的$\varepsilon$都能得到一个相对靠谱的近似;第二,我们发现在指数中逐阶展开,得到的级数效果会比直接展开为幂级数的效果要好。那么,两者能不能结合起来呢?

我们将$(4)$式改写成
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\approx\sqrt{\frac{2\pi}{a+\sqrt{a^2+6 \varepsilon}}}=\sqrt{\frac{\pi}{a+\frac{1}{2}\left(\sqrt{a^2+6 \varepsilon}-a\right)}}\tag{6}$$

点击阅读全文...

19 Apr

柯西命题:盯着它到显然成立为止!

数学分析中数列极限部分,有一个很基本的“柯西命题”:

如果$\lim_{n\to\infty} x_n=a$,则
$$\lim_{n\to\infty}\frac{x_1+x_2+\dots+x_n}{n}=a$$

本文所要谈的便是这个命题,当然还包括类似的一些题目。

柯西命题的证明

柯西命题的证明并不难,只需要根据极限收敛的定义,由于$\lim_{n\to\infty} x_n=a$,所以任意给定$\varepsilon > 0$,存在足够大的$N$,使得对于任意的$n > N$,都有
$$\left|x_n - a\right| < \varepsilon/2\quad(\forall n > N)$$

点击阅读全文...

16 Apr

采样定理:有限个点构建出整个函数

假设我们在听一首歌,那么听完这首歌之后,我们实际上在做这样的一个过程:耳朵接受了一段时间内的声波刺激,从而引起了大脑活动的变化。而这首歌,也就是这段时间内的声波,可以用时间$t$的函数$f(t)$描述,这个函数的区间是有限的,比如$t\in[0,T]$。接着假设另外一个场景——我们要用电脑录下我们唱的歌。这又是怎样一个过程呢?要注意电脑的信号是离散化的,而声波是连续的,因此,电脑要把歌曲记录下来,只能对信号进行采样记录。原则上来说,采集的点越多,就能够越逼真地还原我们的歌声。可是有一个问题,采集多少点才足够呢?在信息论中,一个著名的“采样定理”(又称香农采样定理,奈奎斯特采样定理)告诉我们:只需要采集有限个样本点,就能够完整地还原我们的输入信号来!

采集有限个点就能够还原一个连续的函数?这是怎么做到的?下面我们来解释这个定理。

任意给定一个函数,一般来说我们都可以将它做傅里叶变换:
$$F(\omega)=\int_{-\infty}^{+\infty} f(t)e^{i\omega t}dt\tag{1}$$
虽然我们的积分限写了正负无穷,但是由于$f(t)$是有限区间内的函数,所以上述积分区间实际上是有限的。

点击阅读全文...

28 Mar

有趣的求极限题:随心所欲的放缩

昨天一好友问我以下题目,求证:
$$\lim_{n\to\infty} \frac{1^n + 2^n +\dots + n^n}{n^n}=\frac{e}{e-1}$$
将解答过程简单记录一下。

求解

首先可以注意到,当$n$充分大时,
$$\frac{1^n + 2^n +\dots + n^n}{n^n}=\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n$$
的主要项都集中在最后面那几项,因此,可以把它倒过来计算
$$\begin{aligned}\frac{1^n + 2^n +\dots + n^n}{n^n}=&\left(\frac{1}{n}\right)^n+\left(\frac{2}{n}\right)^n+\dots+\left(\frac{n}{n}\right)^n\\
=&\left(\frac{n}{n}\right)^n+\dots+\left(\frac{2}{n}\right)^n+\left(\frac{1}{n}\right)^n\end{aligned}$$

点击阅读全文...

27 Mar

海伦公式的一个别致的物理推导

海伦公式是已知三角形三边的长度$a,b,c$来求面积$S$的公式,是一个相当漂亮的公式,它不算复杂,同时它关于$a,b,c$是对称的,充分体现了三边的同等地位。可是,这样具有对称美的公式推导,往往要经过一个不对称的过程,比如维基百科上的证明,这未免有点美中不足。本文的目的,就是想为此补充一个对称的推导。本文题目为“物理推导”,关键在于“推导”而不是“证明”,同时这里的“物理”并非是通过物理类比而来,而是推导的思想和方法很具有“物理味道”。

$$\sqrt{p(p-a)(p-b)(p-c)}$$

在推导开始之前,笔者给出一个评论:海伦公式似乎是由三边长求三角形面积的所有可能的公式之中最简单的一个。

点击阅读全文...