23 Jun

貌离神合的RNN与ODE:花式RNN简介

本来笔者已经决心不玩RNN了,但是在上个星期思考时忽然意识到RNN实际上对应了ODE(常微分方程)的数值解法,这为我一直以来想做的事情——用深度学习来解决一些纯数学问题——提供了思路。事实上这是一个颇为有趣和有用的结果,遂介绍一翻。顺便地,本文也涉及到了自己动手编写RNN的内容,所以本文也可以作为编写自定义的RNN层的一个简单教程

注:本文并非前段时间的热点“神经ODE”的介绍(但有一定的联系)。

RNN基本

什么是RNN?

众所周知,RNN是“循环神经网络(Recurrent Neural Network)”,跟CNN不同,RNN可以说是一类模型的总称,而并非单个模型。简单来讲,只要是输入向量序列$(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_T)$,输出另外一个向量序列$(\boldsymbol{y}_1,\boldsymbol{y}_2,\dots,\boldsymbol{y}_T)$,并且满足如下递归关系
$$\boldsymbol{y}_t=f(\boldsymbol{y}_{t-1}, \boldsymbol{x}_t, t)\tag{1}$$
的模型,都可以称为RNN。也正因为如此,原始的朴素RNN,还有改进的如GRU、LSTM、SRU等模型,我们都称为RNN,因为它们都可以作为上式的一个特例。还有一些看上去与RNN没关的内容,比如前不久介绍的CRF的分母的计算,实际上也是一个简单的RNN。

说白了,RNN其实就是递归计算

点击阅读全文...

13 Jun

“噪声对比估计”杂谈:曲径通幽之妙

说到噪声对比估计,或者“负采样”,大家可能立马就想到了Word2Vec。事实上,它的含义远不止于此,噪音对比估计(NCE, Noise Contrastive Estimation)是一个迂回但却异常精美的技巧,它使得我们在没法直接完成归一化因子(也叫配分函数)的计算时,就能够去估算出概率分布的参数。本文就让我们来欣赏一下NCE的曲径通幽般的美妙。

注:由于出发点不同,本文所介绍的“噪声对比估计”实际上更偏向于所谓的“负采样”技巧,但两者本质上是一样的,在此不作区分。

问题起源

问题的根源是难分难舍的指数概率分布~

指数族分布

在很多问题中都会出现指数族分布,即对于某个变量$\boldsymbol{x}$的概率$p(\boldsymbol{x})$,我们将其写成
$$p(\boldsymbol{x}) = \frac{e^{G(\boldsymbol{x})}}{Z}\tag{1}$$
其中$G(\boldsymbol{x})$是$\boldsymbol{x}$的某个“能量”函数,而$Z=\sum_{\boldsymbol{x}} e^{G(\boldsymbol{x})}$则是归一化常数,也叫配分函数。这种分布也称为“玻尔兹曼分布”。

点击阅读全文...

28 Mar

变分自编码器(二):从贝叶斯观点出发

源起

前几天写了博文《变分自编码器(一):原来是这么一回事》,从一种比较通俗的观点来理解变分自编码器(VAE),在那篇文章的视角中,VAE跟普通的自编码器差别不大,无非是多加了噪声并对噪声做了约束。然而,当初我想要弄懂VAE的初衷,是想看看究竟贝叶斯学派的概率图模型究竟是如何与深度学习结合来发挥作用的,如果仅仅是得到一个通俗的理解,那显然是不够的。

所以我对VAE继续思考了几天,试图用更一般的、概率化的语言来把VAE说清楚。事实上,这种思考也能回答通俗理解中无法解答的问题,比如重构损失用MSE好还是交叉熵好、重构损失和KL损失应该怎么平衡,等等。

建议在阅读《变分自编码器(一):原来是这么一回事》后对本文进行阅读,本文在内容上尽量不与前文重复。

准备

在进入对VAE的描述之前,我觉得有必要把一些概念性的内容讲一下。

点击阅读全文...

15 Mar

从最大似然到EM算法:一致的理解方式

最近在思考NLP的无监督学习和概率图相关的一些内容,于是重新把一些参数估计方法理了一遍。在深度学习中,参数估计是最基本的步骤之一了,也就是我们所说的模型训练过程。为了训练模型就得有个损失函数,而如果没有系统学习过概率论的读者,能想到的最自然的损失函数估计是平均平方误差,它也就是对应于我们所说的欧式距离。而理论上来讲,概率模型的最佳搭配应该是“交叉熵”函数,它来源于概率论中的最大似然函数。

最大似然

合理的存在

何为最大似然?哲学上有句话叫做“存在就是合理的”,最大似然的意思是“存在就是最合理的”。具体来说,如果事件$X$的概率分布为$p(X)$,如果一次观测中具体观测到的值分别为$X_1,X_2,\dots,X_n$,并假设它们是相互独立,那么
$$\mathcal{P} = \prod_{i=1}^n p(X_i)\tag{1}$$
是最大的。如果$p(X)$是一个带有参数$\theta$的概率分布式$p_{\theta}(X)$,那么我们应当想办法选择$\theta$,使得$\mathcal{L}$最大化,即
$$\theta = \mathop{\text{argmax}}_{\theta} \mathcal{P}(\theta) = \mathop{\text{argmax}}_{\theta}\prod_{i=1}^n p_{\theta}(X_i)\tag{2}$$

点击阅读全文...

7 Dec

一阶偏微分方程的特征线法

本文以尽可能清晰、简明的方式来介绍了一阶偏微分方程的特征线法。个人认为这是偏微分方程理论中较为简单但事实上又容易让人含糊的一部分内容,因此尝试以自己的文字来做一番介绍。当然,更准确来说其实是笔者自己的备忘。

拟线性情形

一般步骤

考虑偏微分方程
$$\begin{equation}\boldsymbol{\alpha}(\boldsymbol{x},u) \cdot \frac{\partial}{\partial \boldsymbol{x}} u = \beta(\boldsymbol{x},u)\end{equation}$$
其中$\boldsymbol{\alpha}$是一个$n$维向量函数,$\beta$是一个标量函数,$\cdot$是向量的点积,$u\equiv u(\boldsymbol{x})$是$n$元函数,$\boldsymbol{x}$是它的自变量。

点击阅读全文...

6 Oct

从马尔科夫过程到主方程(推导过程)

主方程(master equation)是对随机过程进行建模的重要方法,它代表着马尔科夫过程的微分形式,我们的专业主要工具之一就是主方程,说宏大一点,量子力学和统计力学等也不外乎是主方程的一个特例。

然而,笔者阅读了几个著作,比如《统计物理现代教程》,还有我导师的《生物系统的随机动力学》,我发现这些著作对于主方程的推导都很模糊,他们在着力解释结果的意义,但并不说明结果的思想来源,因此其过程难以让人信服。而知乎上有人提问《如何理解马尔科夫过程的主方程的推导过程?》但没有得到很好的答案,也表明了这个事实。

马尔可夫过程

主方程是用来描述马尔科夫过程的,而马尔科夫过程可以理解为运动的无记忆性,说通俗点,就是下一刻的概率分布,只跟当前时刻有关,跟历史状态无关。用概率公式写出来就是(这里只考虑连续型概率,因此这里的$p$是概率密度):
$$\begin{equation}\label{eq:maerkefu}p(x,\tau)=\int p(x,\tau|y,t) p(y,t) dy\end{equation}$$
这里的积分区域是全空间。这里的$p(x,\tau|y,t)$称为跃迁概率,即已经确定了$t$时刻来到了$y$位置后、在$\tau$时刻达到$x$的概率密度,这个式子的物理意义是很明显的,就不多做解释了。

点击阅读全文...

3 Jul

《交换代数导引》参考答案

这学期我们的一门课是《交换代数》,是本科抽象代数的升级版。我们用的教材是Atiyah的《Introduction to Commutative Algebra》(交换代数导引),而且根据老师的上课安排,还需要我们把部分课后习题完成并讲解...不得不说这门课上得真累啊~

习题做到后面,我干脆懒得起草稿了,直接把做的答案用LaTeX录入了,既方便排版也方便修改。在这里分享给有需要的读者~答案是用中文写的,注释比较详细,适合刚学这门课的同学~

笔者所做的部分:《交换代数导引》参考答案.pdf

当然这份答案只包括老师对我们的要求的那部分习题,下面是网上搜索到的完整的习题解答,英文版的:

网上找到的答案:Jeffrey Daniel Kasik Carlson - Exercises to Atiya.pdf

如果答案有问题,欢迎留言指出。

23 Mar

梯度下降和EM算法:系出同源,一脉相承

PS:本文就是梳理了梯度下降与EM算法的关系,通过同一种思路,推导了普通的梯度下降法、pLSA中的EM算法、K-Means中的EM算法,以此表明它们基本都是同一个东西的不同方面,所谓“横看成岭侧成峰,远近高低各不同”罢了。

在机器学习中,通常都会将我们所要求解的问题表示为一个带有未知参数的损失函数(Loss),如平均平方误差(MSE),然后想办法求解这个函数的最小值,来得到最佳的参数值,从而完成建模。因将函数乘以-1后,最大值也就变成了最小值,因此一律归为最小值来说。如何求函数的最小值,在机器学习领域里,一般会流传两个大的方向:1、梯度下降;2、EM算法,也就是最大期望算法,一般用于复杂的最大似然问题的求解。

在通常的教程中,会将这两个方法描述得迥然不同,就像两大体系在分庭抗礼那样,而EM算法更是被描述得玄乎其玄的感觉。但事实上,这两个方法,都是同一个思路的不同例子而已,所谓“本是同根生”,它们就是一脉相承的东西。

让我们,先从远古的牛顿法谈起。

牛顿迭代法

给定一个复杂的非线性函数$f(x)$,希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足$f'(x_0)=0$,然后可以转化为求方程$f'(x)=0$的根了。非线性方程的根我们有个牛顿法,所以
\begin{equation}x_{n+1} = x_{n} - \frac{f'(x_n)}{f''(x_n)}\end{equation}

点击阅读全文...