14 May

双固定引力中心问题

我们在研究地球附近的小天体运动时,如果把天体和地球看作一个二体系统,那最多只能算上一个零级近似,如果使用“地球+月球+小天体”组成的圆形限制性三体问题模型,那可以算上一个二级近似了。那么,一级近似又是什么了。BoJone认为,它就是本文将要讲的“双固定引力中心问题”了,也叫“双不动中心问题”,英文名是two fixed-center problem。这是一种特殊的限制性三体问题。在这个三体系统中,两个主天体(或称有限质量天体)固定不动,第三个小天体在两个固定的主天体吸引下运动。欧拉、拉格朗日、勒让德、雅可比等人很早就研究过这个问题。其中,欧拉最先成功地求出了这个系统的积分。[引用]

另外,双固定引力中心问题还有另外一个应用,在研究人造卫星的运动时,可以只考虑地球引力,但是由于地球不是完美的球体,把其看成一个质点其实不十分精确,要是把它拆分为两个引力源,就可以很大程度上提高精确度。毕竟双固定引力中心问题是完全可以积分的,可以作为一个比较好的中间轨道(介乎圆锥曲线和精确轨道之间的)。

点击阅读全文...

4 Apr

科学空间:2011年4月重要天象

4月,将一脚踏入春天,我们头顶的天象剧场也将再次变得热闹起来,火星合月、天琴座流星雨等天象都非常值得期待,在阳春4月,让我们仰望星空,一起来感受头顶的精彩吧。

天象大观

01日 金星距太阳: 35.2° W
04日 07:18 土星冲日
06日 23:06 木星 合日
07日 18:19 月合昴宿星团: 2.1° N
10日 03:25 水星 下合日 .
18日 06:04 月合角宿一: 2.5° N
20日 02:12 水星合火星: 0.6° N
23日 06:44 天琴座流星雨: ZHR = 20

点击阅读全文...

5 Mar

科学空间:2011年3月重要天象

几颗经典行星,将成为3月星空剧场的主角。其中难得一见的水星将迎来一次观测条件很好的东大距,而到了下旬,土星也几乎整夜可见。随着落下时间的逐渐提前,木星的观测条件正逐渐变差。作为晨星的金星升起的时间也正不断推迟,我们将越来越难观测到它的身影。

天象大观

01日 11:40 金星合月: 1.7° S
11日 12:35 月合昴宿星团: 1.8° N
16日 04:16 水星合木星: 2° N
21日 07:21 春分
21日 19:00 月合角宿一: 2.5° N
21日 19:54 天王星合日
23日 08:59 水星大距: 18.6° E
31日 21:25 金星合月: 6.6° S

点击阅读全文...

19 Feb

《方程与宇宙》:一种有趣的三体问题坐标

通常来说,选取惯性系为参考系,列出的三体问题方程为
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}$$

历史上出现过很多不同形式的变换,使得三体问题的运动方程有了各样的形式,如Lagrange形式、Jacobi形式、Hamilton形式等。这些变换形式都各有特点,都能够在一定程度上化简三体问题。BoJone在研究摆弄等质量型三体问题的运动方程时,也发现了一种很有趣的变换,在此贴出与大家分享。

设$\vec{R}_1=\vec{r}_1-\vec{r}_2,\vec{R}_2=\vec{r}_2-\vec{r}_3,\vec{R}_3=\vec{r}_3-\vec{r}_1$,则三体问题的运动方程变为

点击阅读全文...

8 Feb

地球扁率的简单推导

假如没有自转,单凭物质之间的引力作用,天体应该都会呈现一个很完美(不是绝对完美)的球形。不过绝大多数的天体都存在着自转,因此他们的赤道半径都比极半径长。BoJone粗糙地考虑了一下在引力和惯性离心力的共同作用下,天体所呈现的形状,并与太阳系的一些天体进行对比,发现还是能够吻合到一定程度。现在此和大家分享,供读者参考。

地球扁率推导

地球扁率推导

点击阅读全文...

6 Feb

[SETI-50周年]送给外星人的礼物

转载自2011年1月的《天文爱好者》 作者:钟晚晴

生命出现是天体演化的必然结果

探索地外文明

探索地外文明

15世纪时,欧洲的文艺复兴运动引起了人们宇宙观的大革命。哥白尼学说的主要传播者之一,意大利思想家布魯诺毫不含糊地宣扬日心说并且提及“外星人”是否存在问题,他这样写到:“宇宙中存在着无数的太阳,存在着无数绕自己太阳运转的地球,就像我们的七个行星绕着我们的太陌运转似的……。在这些世界上居住着各种生物。”科学大师伽利略率先把望远镜指向星空,继而几百年以来有了一系列天文发现。太空视野的大幵阔常引发人类这样的追问:除了地球之外,茫茫宇宙中还存在别的文明星球吗?如果存在,能否找到人类的知音一智慧生命?

科学家通过研究地球化石发现,早在35亿年前地球上就已有了一种发育得比较高级的单细胞生物,即蓝藻类;根据恒星演化理论以及对地球上古老岩石和陨星物质分析知道,太阳和地球的形成比这种生物的出现至少还要早约十几亿年左右。太阳系自原始星云形成后大约经过50亿年地球上才有人类。此外,科学考察表明,在最近五亿年来(根据化石考查)已经有过五次生命大灭绝,人类是五亿年来最后一次灭绝以后从猿进化而来。天体的环境变化往往决定着许许多多生命的命运,例如6500万年前恐龙的绝灭,据说就是遭遇了寒冷的冰期或地球被一颗直径十几千米的小天体撞击的结果。

从20世纪初以来,天文学的研究成果是显著的,例如关于银河系的许多发现,河外星系及宇宙膨胀的发现,特别是后来发现类星体、星际分子、脉冲星、河外星系超新星爆发等等。在进入空间科学和电子计算机科学时代以来,人们对宇宙天体的研究更加深入,每年都有许多新的天体被发现、探究。

点击阅读全文...

4 Feb

《方程与宇宙》:限制性三体的那些事儿(八)

在上一些关于限制性三体问题的探讨中,我们得出了在平面上的方程:
$$\ddot{R}+2i\omega \dot{R}=\omega^2 R-GM\frac{R-l_1}{|R-l_1|^3}-Gm\frac{R-l_2}{|R-l_2|^3}\tag{32}$$
能量积分为:
$$\frac{1}{2}|\dot{R}|^2=\frac{1}{2} \omega^2 |R|^2+\frac{GM}{|R-l_1|}+\frac{Gm}{|R-l_2|}-C\tag{33}$$
下面就以这两个方程为基础,再说说限制性三体问题的那些事儿...

点击阅读全文...

4 Feb

[春礼]《方程与宇宙》:圆形限制性三体问题(七)

平面圆形限制性三体问题运动方程及能量积分
plane circular restricted three-body problem
02.04有重要修正!!

寒假一个很大的目标就是能够在三体问题的周期轨道上有点突破,于是就出动了“向量”、“复分析”、“微分方程”等理论“核武”,遗憾的是,“有心栽花花不开”,到今天还是没有多少进展。不过俗语也说“无心插柳柳成荫”,也不错。今天回看《天体力学引论》中的“圆形限制性三体问题”,经过一番思考,利用这些天的思考方法重新推导出了其运动方程和能量积分,也算是“意外收获”在此作为春节礼物与大家分享。

平面圆形限制性三体问题

平面圆形限制性三体问题

所谓“圆形限制性三体问题”,就是指两个大质量天体(质点)在它们相互引力作用下做圆周运动,假设第三天体(质量趋于0)只受到这两个天体的引力作用而不影响两个天体运行的一种运动情况。由于普通三体问题无法积分,而这个“限制性模型”能够把问题化简不少(不过还是不能积分出来的),因此也得到了一定应用。它的应用条件是:第三体质量小(如当前航天器与地球、太阳)、短程。注意短程也是相当重要的条件之一,注意短程也是相当重要的条件之一,质量越小应用范围越大。要是质量大的话,就不能计算太长的路程。

点击阅读全文...