类别不平衡问题,也称为长尾分布问题,在本博客里已经有好几次相关讨论了,比如《从loss的硬截断、软化到focal loss》《将“Softmax+交叉熵”推广到多标签分类问题》《通过互信息思想来缓解类别不平衡问题》。对于缓解类别不平衡,比较基本的方法就是调节样本权重,看起来“高端”一点的方法则是各种魔改loss了(比如Focal Loss、Dice Loss、Logits Adjustment等),本文希望比较系统地理解一下它们之间的联系。

长尾分布:少数类别的样本数目非常多,多数类别的样本数目非常少。

长尾分布:少数类别的样本数目非常多,多数类别的样本数目非常少。

从光滑准确率到交叉熵 #

这里的分析主要以sigmoid的2分类为主,但多数结论可以平行推广到softmax的多分类。设x为输入,y\in\{0,1\}为目标,p_{\theta}(x) \in [0, 1]为模型。理想情况下,当然是要评测什么指标,我们就去优化那个指标。对于分类问题来说,最朴素的指标当然就是准确率,但准确率并没有办法提供有效的梯度,所以不能直接来训练。

为此,我们一个光滑化的指标。从之前的文章《函数光滑化杂谈:不可导函数的可导逼近》,准确率的光滑化近似是
\begin{equation}\text{ACC}_{\text{smooth}}=\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y p_{\theta}(x) + (1 - y)(1 - p_{\theta}(x))\big]\end{equation}
其中\mathcal{D}是训练数据集合。所以按道理,我们应该以-\text{ACC}_{\text{smooth}}为最小化的目标。但事实上,直接优化这个目标的效果并不好,更好的是去优化交叉熵
\begin{equation}\text{cross_entropy}=\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[-y \log p_{\theta}(x) - (1 - y)\log(1 - p_{\theta}(x))\big]\end{equation}
这就有点耐人寻味了,明明\text{ACC}_{\text{smooth}}更接近我们的评测指标,为什么用交叉熵反而对评测指标更有利呢?

这需要用梯度来解释。对于p_{\theta}(x),它通常是经过了sigmoid激活的,也就是p_{\theta}(x)=\sigma(z_{\theta}(x)),其中\sigma(t)=\frac{1}{1+e^{-t}},它的导数\sigma'(t)=\sigma(t)(1 - \sigma(t)),而z_{\theta}(x)就是我们通常称的“logits”。

假设y是1,那么对应的-\text{ACC}_{\text{smooth}}就是-p_{\theta}(x)=-\sigma(z_{\theta}(x)),它的梯度是
\begin{equation}-\nabla_{\theta} p_{\theta}(x) = - p_{\theta}(x) (1 - p_{\theta}(x))\nabla_{\theta}z_{\theta}(x)\end{equation}
刚才说了,y是1,所以训练目标是p_{\theta}(x)\to 1,因此我们期望当p_{\theta}(x)接近于0时(误差较大),会带来一个较大的梯度,当p_{\theta}(x)接近于1时(误差较小),会带来一个较小的梯度。但上述-\nabla_{\theta} p_{\theta}(x)显然不是如此,它的调节项p_{\theta}(x) (1 - p_{\theta}(x))在0.5处取到最大值,至于0和1都是最小值,这就意味着如果误差太大了,梯度反而也小,这就带来优化效率的低下,最终导致整体效果不好。相反,对于交叉熵来说,有
\begin{equation}-\nabla_{\theta} \log p_{\theta}(x) = - (1 - p_{\theta}(x))\nabla_{\theta}z_{\theta}(x)\end{equation}
刚好把梯度里边带来负面作用的p_{\theta}(x)因子去掉了,因此优化效率更高,最终效果也好些。上述分析针对的是y=1,如果y=0,那么结论也是一样的。

从光滑F1到加权交叉熵 #

从这个过程中,我们可以感觉到,对loss的各种魔改,本质上来说都只是在调整梯度,得到更合理的梯度,我们就能实现更有效的优化,得到更好的模型。此外,我们再思考上述转换过程,本来近似目标的梯度是-\nabla_{\theta}p_{\theta}(x),结果-\nabla_{\theta}\log p_{\theta}(x)效果更好。如果我们不去仔细分析背后的原因,直接把p\to \log p当作一个“公理”来使用,那能否成立呢?会不会带来一些有意思的结果呢?

举个例子,当负样本远远多于正样本时,我们的评测指标通常都不再是准确率了(不然直接全部输出0准确率就很高了),我们通常关心正类的F1,而F1的直接优化也是不容易的,所以我们也需要一个光滑版,文章《函数光滑化杂谈:不可导函数的可导逼近》同样也给出了结果:
\begin{equation}\text{F1}_{\text{smooth}}=\frac{2 \mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y p_{\theta}(x)\big]}{\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y + p_{\theta}(x)\big]}\end{equation}
所以我们的最小化目标原本是-\text{F1}_{\text{smooth}}。根据上述“公理”,我们先直接对-\text{F1}_{\text{smooth}}求梯度:
\begin{equation}\begin{aligned}&-\nabla_{\theta}\frac{2 \mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y p_{\theta}(x)\big]}{\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y + p_{\theta}(x)\big]}\\ =&-2\frac{\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y \nabla_{\theta}p_{\theta}(x)\big]}{\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y + p_{\theta}(x)\big]} + 2\frac{\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y p_{\theta}(x)\big]\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[\nabla_{\theta}p_{\theta}(x)\big]}{\left(\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y + p_{\theta}(x)\big]\right)^2}\\ =&-\frac{2\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[\big(y-\text{F1}_{\text{smooth}}/2\big)\nabla_{\theta}p_{\theta}(x)\big]}{\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y + p_{\theta}(x)\big]} \end{aligned}\end{equation}
其中\frac{2}{\mathbb{E}_{(x,y)\sim\mathcal{D}}[y + p_{\theta}(x)]}是整体的一个缩放因子,我们主要关心的还是每个样本的梯度,所以结果是
\begin{equation}-\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[\big(y-\text{F1}_{\text{smooth}}/2\big)\nabla_{\theta}p_{\theta}(x)\big]\end{equation}
根据p\to \log p“公理”(负样本则是-p\to\log(1-p)),我们得到最后的梯度为
\begin{equation}-\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y\cdot\big(1-\text{F1}_{\text{smooth}}/2\big)\cdot\nabla_{\theta}\log p_{\theta}(x) + (1 - y)\cdot\text{F1}_{\text{smooth}}/2\cdot\nabla_{\theta}\log (1-p_{\theta}(x))\big]\end{equation}
这等价于优化目标
\begin{equation}-\mathbb{E}_{(x,y)\sim\mathcal{D}}\big[y\cdot\big(1-\text{F1}_{\text{smooth}}/2\big)\cdot\log p_{\theta}(x) + (1 - y)\cdot\text{F1}_{\text{smooth}}/2\cdot\log (1-p_{\theta}(x))\big]\end{equation}
的梯度(其中\text{F1}_{\text{smooth}}不求梯度),所以这其实就是用1-\text{F1}_{\text{smooth}}/2调节正样本的交叉熵,用\text{F1}_{\text{smooth}}/2调节负样本的交叉熵。

从扩大边界到Logits调整 #

其实无论评测指标是什么,我们肯定都是希望每一个样本都尽可能预测对。问题在于,样本数目比较少的类别,因为学习得不够充分,所以泛化性能不会太好。

让我们从几何角度来思考这个问题。理想情况下,在编码空间里边,每一类样本都占据着自己的一个“地盘”,不同类的“地盘”是互不相交的。样本数目较少的类别泛化性能不大好,主要就体现为其类别所占据的“地盘”比较小,而且往往还会受到类别数目较多的样本的“打压”,因此“生存”几乎都成了问题,更不用说照顾到训练集没有出现过的新样本了。

怎么解决这个问题呢?其实也很形象,如果样本数目少的类别,里边的样本个个都是“大佬”,一个打十个的那种,那么就算样本少,也能在“地盘之争”中不落下风。让我们考虑一个n分类问题,某个样本的编码向量为f_{\theta}(x),类别向量为u_y,那么该样本与类别向量的相似度,一般用内积\langle f_{\theta}(x), u_y\rangle来度量。假设每个样本能占据半径为r_y的“地盘”,这样就是说,满足\Vert z - f_{\theta}(x)\Vert \leq r_y的任意z都算是该样本的编码向量,这也就意味着,满足这个条件的任意z,它跟u_y的相似度都应该大于它跟其他类别的相似度。

现在我们考虑
\begin{equation}\langle z, u_y\rangle = \langle f_{\theta}(x), u_y\rangle + \langle z - f_{\theta}(x), u_y\rangle\end{equation}
由于\Vert z - f_{\theta}(x)\Vert \leq r_y,所以显然有
\begin{equation}\langle f_{\theta}(x), u_y\rangle - r_y\Vert u_y\Vert\leq\langle z, u_y\rangle \leq \langle f_{\theta}(x), u_y\rangle + r_y\Vert u_y\Vert\end{equation}
所以,为了达到“zu_y的相似度都应该大于它跟其他类别的相似度”这个目的,只需要“zu_y的最小相似度都应该大于它跟其他类别的最大相似度”,因此我们的优化目标变为
\begin{equation}-\log\frac{e^{\langle f_{\theta}(x), u_y\rangle - r_y\Vert u_y\Vert}}{e^{\langle f_{\theta}(x), u_y\rangle - r_y\Vert u_y\Vert}+\sum\limits_{i\neq y} e^{\langle f_{\theta}(x), u_i\rangle + r_y\Vert u_i\Vert}}\end{equation}
可以看到,这其实就相当于am-softmax、circle loss等带有margin的softmax变种,具体形式其实不重要,只需要为类别小的类设置更大的margin就好(样本少的类别每个样本都更“能打”)。那怎么设计每个类的margin呢?之前的文章《通过互信息思想来缓解类别不平衡问题》就提供了一个方案:m_y=-\tau\log p(y),这里的p(y)是先验分布,那么就有
\begin{equation}-\log\frac{e^{\langle f_{\theta}(x), u_y\rangle + \tau \log p(y)}}{\sum\limits_{i} e^{\langle f_{\theta}(x), u_i\rangle + \tau \log p(i)}}\end{equation}
这样我们就联系到了logit adjustment loss了,或者说给logit adjustment loss提供了一种几何直观理解。本质上来说,logit adjustment也是在调节权重,只不过一般的调节权重是在损失函数的\log之后调整,而logit adjustment则是在\log之前调整。

感觉上可以小结一下了 #

本文就类别不平衡现象及其对策做了一些思考,主要是希望通过一些相对直观的引导,来揭示一些魔改loss的思路,从中我们也可以发现,其实这些方案本质上都算是在调节样本权重或者类权重。本文的分析思路相对来说比较散漫,基本上是笔者的头脑风暴内容,如果错漏之处,请读者见谅并指出。

转载到请包括本文地址:https://kexue.fm/archives/7708

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (Aug. 31, 2020). 《再谈类别不平衡问题:调节权重与魔改Loss的对比联系 》[Blog post]. Retrieved from https://kexue.fm/archives/7708

@online{kexuefm-7708,
        title={再谈类别不平衡问题:调节权重与魔改Loss的对比联系},
        author={苏剑林},
        year={2020},
        month={Aug},
        url={\url{https://kexue.fm/archives/7708}},
}