18 Dec

书接上文,在《生成扩散模型漫谈(二十七):将步长作为条件输入》中,我们介绍了加速采样的Shortcut模型,其对比的模型之一就是“一致性模型(Consistency Models)”。事实上,早在《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》介绍ReFlow时,就有读者提到了一致性模型,但笔者总感觉它更像是实践上的Trick,理论方面略显单薄,所以兴趣寥寥。

不过,既然我们开始关注扩散模型加速采样方面的进展,那么一致性模型就是一个绕不开的工作。因此,趁着这个机会,笔者在这里分享一下自己对一致性模型的理解。

熟悉配方

还是熟悉的配方,我们的出发点依旧是ReFlow,因为它大概是ODE式扩散最简单的理解方式。设$\boldsymbol{x}_0\sim p_0(\boldsymbol{x}_0)$是目标分布的真实样本,$\boldsymbol{x}_1\sim p_1(\boldsymbol{x}_1)$是先验分布的随机噪声,$\boldsymbol{x}_t = (1-t)\boldsymbol{x}_0 + t\boldsymbol{x}_1$是加噪样本,那么ReFlow的训练目标是:

点击阅读全文...

15 Dec

这篇文章我们再次聚焦于扩散模型的采样加速。众所周知,扩散模型的采样加速主要有两种思路,一是开发更高效的求解器,二是事后蒸馏。然而,据笔者观察,除了上两篇文章介绍过的SiD外,这两种方案都鲜有能将生成步数降低到一步的结果。虽然SiD能做到单步生成,但它需要额外的蒸馏成本,并且蒸馏过程中用到了类似GAN的交替训练过程,总让人感觉差点意思。

本文要介绍的是《One Step Diffusion via Shortcut Models》,其突破性思想是将生成步长也作为扩散模型的条件输入,然后往训练目标中加入了一个直观的正则项,这样就能直接稳定训练出可以单步生成模型,可谓简单有效的经典之作。

ODE扩散

原论文的结论是基于ODE式扩散模型的,而对于ODE式扩散的理论基础,我们在本系列的(六)(十二)(十四)(十五)(十七)等博客中已经多次介绍,其中最简单的一种理解方式大概是(十七)中的ReFlow视角,下面我们简单重复一下。

点击阅读全文...

16 Oct

随机分词再探:从Viterbi Sampling到完美采样算法

在文章《随机分词浅探:从Viterbi Decoding到Viterbi Sampling》中,笔者提出了一种名为“Viterbi Sampling”的随机分词算法,它只是在求最优解的Viterbi Decoding基础上进行小修改,保留了Viterbi算法的简单快速的特点,相比于已有的Subword Regularization明显更加高效。不过,知乎上的读者 @鶴舞 指出,当前的采样算法可能会在多次二选一“稀释”了部分方案的出现概率,直接后果是原本分数最高的切分并不是以最高概率出现。

经过仔细思考后,笔者发现相应的问题确实存在,当时为了尽快得到一种新的采样算法,在细节上的思考和处理确实比较粗糙。为此,本文将进一步完善Viterbi Sampling算法,并证明完善后的算法在效果上可以跟Subword Regularization等价的。

问题分析

首先,我们来看一下评论原话

点击阅读全文...

25 Feb

“用词造句”是小学阶段帮助我们理解和运用词语的一个经典任务,从自然语言处理的角度来看,它是一个句子扩写或者句子补全任务,它其实要求我们具有不定向地进行文本生成的能力。然而,当前主流的语言模型都是单方向生成的(多数是正向的,即从左往右,少数是反向的,即从右往左),但用词造句任务中所给的若干个词未必一定出现在句首或者句末,这导致无法直接用语言模型来完成造句任务。

本文我们将介绍论文《CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling》,它使用MCMC采样使得单向语言模型也可以做到不定向生成,通过增、删、改操作模拟了人的写作润色过程,从而能无监督地完成用词造句等多种文本生成任务。

问题设置

无监督地进行文本采样,那么直接可以由语言模型来完成,而我们同样要做的,是往这个采样过程中加入一些信号$\boldsymbol{c}$,使得它能生成我们期望的一些文本。在本系列第一篇文章《【搜出来的文本】⋅(一)从文本生成到搜索采样》的“明确目标”一节中,我们就介绍了本系列的指导思想:把我们要寻找的目标量化地写下来,然后最大化它或者从中采样。

点击阅读全文...

22 Jan

【搜出来的文本】⋅(三)基于BERT的文本采样

从这一篇开始,我们就将前面所介绍的采样算法应用到具体的文本生成例子中。而作为第一个例子,我们将介绍如何利用BERT来进行文本随机采样。所谓文本随机采样,就是从模型中随机地产生一些自然语言句子出来,通常的观点是这种随机采样是GPT2、GPT3这种单向自回归语言模型专有的功能,而像BERT这样的双向掩码语言模型(MLM)是做不到的。

事实真的如此吗?当然不是。利用BERT的MLM模型其实也可以完成文本采样,事实上它就是上一篇文章所介绍的Gibbs采样。这一事实首先由论文《BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model》明确指出。论文的标题也颇为有趣:“BERT也有嘴巴,所以它得说点什么。”现在就让我们看看BERT究竟能说出什么来~

点击阅读全文...

14 Jan

【搜出来的文本】⋅(二)从MCMC到模拟退火

在上一篇文章中,我们介绍了“受限文本生成”这个概念,指出可以通过量化目标并从中采样的方式来无监督地完成某些带条件的文本生成任务。同时,上一篇文章还介绍了“重要性采样”和“拒绝采样”两个方法,并且指出对于高维空间而言,它们所依赖的易于采样的分布往往难以设计,导致它们难以满足我们的采样需求。

此时,我们就需要引入采样界最重要的算法之一“Markov Chain Monte Carlo(MCMC)”方法了,它将马尔可夫链和蒙特卡洛方法结合起来,使得(至少理论上是这样)我们从很多高维分布中进行采样成为可能,也是后面我们介绍的受限文本生成应用的重要基础算法之一。本文试图对它做一个基本的介绍。

马尔可夫链

马尔可夫链实际上就是一种“无记忆”的随机游走过程,它以转移概率$p(\boldsymbol{y}\leftarrow\boldsymbol{x})$为基础,从一个初始状态$\boldsymbol{x}_0$出发,每一步均通过该转移概率随机选择下一个状态,从而构成随机状态列$\boldsymbol{x}_0, \boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_t, \cdots $,我们希望考察对于足够大的步数$t$,$\boldsymbol{x}_t$所服从的分布,也就是该马尔可夫链的“平稳分布”。

点击阅读全文...

7 Jan

【搜出来的文本】⋅(一)从文本生成到搜索采样

最近,笔者入了一个新坑:基于离散优化的思想做一些文本生成任务。简单来说,就是把我们要生成文本的目标量化地写下来,构建一个分布,然后搜索这个分布的最大值点或者从这个分布中进行采样,这个过程通常不需要标签数据的训练。由于语言是离散的,因此梯度下降之类的连续函数优化方法不可用,并且由于这个分布通常没有容易采样的形式,直接采样也不可行,因此需要一些特别设计的采样算法,比如拒绝采样(Rejection Sampling)、MCMC(Markov Chain Monte Carlo)、MH采样(Metropolis-Hastings Sampling)、吉布斯采样(Gibbs Sampling),等等。

有些读者可能会觉得有些眼熟,似乎回到了让人头大的学习LDA(Latent Dirichlet Allocation)的那些年?没错,上述采样算法其实也是理解LDA模型的必备基础。本文我们就来回顾这些形形色色的采样算法,它们将会出现在后面要介绍的丰富的文本生成应用中。

点击阅读全文...

16 Oct

如何划分一个跟测试集更接近的验证集?

不管是打比赛、做实验还是搞工程,我们经常会遇到训练集与测试集分布不一致的情况。一般来说我们会从训练集中划分出来一个验证集,通过这个验证集来调整一些超参数(参考《训练集、验证集和测试集的意义》),比如控制模型的训练轮数以防止过拟合。然而,如果验证集本身跟测试集差别比较大,那么验证集上很好的模型也不代表在测试集上很好,因此如何让划分出来验证集跟测试集的分布差异更小一些,是一个值得研究的题目。

两种情况

首先,明确一下,本文所考虑的,是能给拿到测试集数据本身、但不知道测试集标签的场景。如果是那种提交模型封闭评测的场景,我们完全看不到测试集的,那就没什么办法了。为什么会出现测试集跟训练集分布不一致的现象呢?主要有两种情况。

点击阅读全文...