将多项式分解为两个不可约多项式之和
By 苏剑林 | 2014-12-22 | 39492位读者 | 引用在高等代数的多项式一章中,通常会有这样的一道练习题:
证明任意有理数域上的多项式都能够表示为两个有理数域上的不可约多项式之和。
这是道简单的练习题,证明方法有多种。首先来介绍一个巧妙的证法。
一个巧妙证明
有理数域上的多项式问题等价于整数域上的多项式问题,因此,只需要对整数域上的多项式进行证明(这步转换使得我们可以使用艾森斯坦判别法)。设$f(x)$是整数域上的一个$n$次多项式:
$$f(x)=a_n x^n+a_{n-1} x^{n-1}+\dots+a_1 x+a_0$$
我们只需要注意到
$$p f(x)=\left[p f(x)+x^n+p\right]-(x^{n}+p)$$
齐次对称多项式初等表示的新尝试
By 苏剑林 | 2013-07-05 | 27207位读者 | 引用这是我的这学期高等代数课的一个小论文。说到这里,其实我挺喜欢那些不用考试,通过平时考核以及写论文、报告或者做实验的方式来评成绩的方式,毕竟我觉得这才是比较综合地体现了知识和技能的水平(当然更重要的一个原因是我比较喜欢写作啦~~)。我们高等代数有两门课程,一是基本的上课,二是研讨课,分别考核。老师照顾我们,研讨课不用考试,写小论文就行了。Yeah~~
我写的是有关对称多项式的。其实这文章在半个学期之前就酝酿着了,当时刚学到对称多项式的初等表示。所谓初等表示,就是将一个多元对称多项式表示为$\sigma_1,\sigma_2,\sigma_3,...$的组合。其中
$$\begin{aligned}\sigma_1=x_1+x_2+...+x_n \\ \sigma_2=x_1 x_2+x_1 x_3+...+x_1 x_n+x_2 x_3+...+x_{n-1} x_n \\ ... \\ \sigma_n=x_1 x_2 ... x_n\end{aligned}$$
书本上给出了待定系数法,但是每次都要求解方程组,让我甚是烦恼,所以我研究直接展开的方案,最终得出了两种方法。当时也刚好接触着张量的知识,了解到“爱因斯坦求和约定”,于是想充分发挥其威力,就促成了这篇文章。其实我自定义了“方括弧”和“圆括弧”两种运算,都是符号上的简化。两种方法在某种意义上相互补充,笔者自感颇为满意,遂与大家分享。具体内容就不贴出来了,请大家下载pdf文件观看吧。
对称多项式不等式的“物理证明”
By 苏剑林 | 2011-08-13 | 37352位读者 | 引用本文将再次谈到对称这个话题,不过这一次的对象不是“等式”,而是“不等式”。
在数学研究中,我们经常会遇到各种各样的函数式子,其中有相当一部分是“对称”的。什么是对称的函数呢?对称有很多种说法,但是针对于多元对称式,我们的定义为满足$f(x_1,x_2,...,x_n)=f(y_1,y_2,...,y_n)$的函数,其中$(y_1,y_2,...,y_n)$是$(x_1,x_2,...,x_n)$的任意一个排列。通俗来讲,就是将式子中任意两个未知数交换位置,得到的式子还是和原来的式子一样。例如$\sin x+\sin y$,把$x,y$交换位置后得到$\sin y+\sin x$,还是和原来的一样;再如$xy+yz+zx$,将y,z互换后可以得到$xz+zy+yx$,结果还是和原式一样;等等。有些对称的函数是一个n次的多项式,那么就叫它为n次对称多项式,上边的例子$xz+zy+yx$就是一个三元二次对称多项式。
最近评论