《方程与宇宙》:三体问题和它的初积分(六)
By 苏剑林 | 2011-01-20 | 62646位读者 | 引用The Three Body Problem and its Classical Integration
很多天文爱好者都已经接触到了“二体问题”(我们在高中学习到的“开普勒三定律”就是内容之一),由于在太阳系中行星质量相对较小而且距离相对较远,应用“二体问题”的解对天体进行计算、预报等能够满足一定的近似需求。不过,如果需要更高精度的计算,就不能把其他行星的引力给忽略掉了,于是就产生了所谓N体问题(N-Body Problem),即N个质点尽在它们各自引力的相互作用下的运动规律问题。最简单的二体已经被彻底解决,而三体或更多体的问题则与二体大相径庭,因为庞加莱证明了,三体问题不能严格求解,而且这是一个混沌系统,任何微小的扰动都会造成不可预期的效果。
根据牛顿力学,选择惯性参考系,设三个质点分别为$M_1,M_2,M_3$,向径分别为$\vec{r_1},\vec{r_2},\vec{r_3}$,可以列出运动方程(以下的导数都默认是对时间t求导)
备忘:椭圆坐标与复三角函数
By 苏剑林 | 2011-04-10 | 49138位读者 | 引用只要我们曾经拥有过——《萍聚》
By 苏剑林 | 2011-06-06 | 21951位读者 | 引用这首歌是凤儿介绍的,去年我们学校高一夏令营的“主题歌曲”。她说歌词写得很好,我感觉也挺不错的^_^
萍,指的是漂浮在水面上的一种藻类,风吹过来,它们就会在风的作用力下聚在一起。人好象是浮在水面上的荷叶,聚散不过都是风吹动所致,到处飘散而已。因此便有了“萍水相逢”这一成语,指的是无心的邂逅或偶然的相遇。“萍聚”亦然。
曾有宋词写道“风中柳絮水中萍,聚散两无情”,这便让我们倍感人生悲欢离合的无奈。在这个充斥着高考的离别的六月里,离愁味道更浓了。可是,不论如何,明天的事情与我们无关,我们要珍惜今天事,珍惜今天人,尽我所能把握好我所拥有的。正如——
Cherish someone special for you and let them know you cherish them.
这样,当我们真的面临无可奈何的离别时,也能够含泪而微笑地挥手,唱着“只要我们曾经拥有过...”。这就是《萍聚》的声音!
记2011北京大学天文夏令营
By 苏剑林 | 2011-07-18 | 28616位读者 | 引用【翻译】庆祝希格斯玻色子的最终发现!
By 苏剑林 | 2012-07-18 | 29059位读者 | 引用2012诺贝尔奖...
By 苏剑林 | 2012-10-11 | 37217位读者 | 引用又是一年诺奖公布时......每年的这个时候,诺贝尔奖又会被热门地提及到,现在三个自然科学方面的奖项都已经公开了。简略收集如下:
诺贝尔生理学或医学奖
京都大学物质-细胞统合系统据点iPS细胞研究中心主任长山中伸弥(Shinya Yamanaka)、英国发育生物学家约翰-戈登因(John B. Gurdon)。
原因:在细胞核重新编程研究领域的杰出贡献而获奖。所谓细胞核重编程即将成年体细胞重新诱导回早期干细胞状态,以用于形成各种类型的细胞,应用于临床医学。细胞核重编程指细胞内的基因表达由一种类型变成另一种类型。通过这一技术,可在同一个体上将较容易获得的细胞(如皮肤细胞)类型转变成另一种较难获得的细胞类型(如脑细胞)。这一技术的实现将能避免异体移植产生的排异反应。
中国第一个诺贝尔奖得主
By 苏剑林 | 2012-10-11 | 50552位读者 | 引用费曼路径积分思想的发展(三)
By 苏剑林 | 2012-12-27 | 20284位读者 | 引用3、费曼图和量子电动力学的重整化
在1947年美国避难岛(Shelter Island)会议上,兰姆报导了他的重大发现,即现今所称的兰姆位移;氢原子的$2S_{\frac{1}{2}}$能级比$2P_{\frac{1}{2}}$高出约1000MHz。而按照狄拉克理论,对纯库仑相互作用的电子-质子系统,这两个能级应该是简并的。人们很快就认识到,该位移应归之于一阶近似的辐射校正[19]。贝特用一个电子的校正质量就非相对论近似得出了氢原子nS能级的位移公:
$$\frac{8}{3\pi}(\frac{e^2}{\hbar c})Ry \frac{Z^4}{n^3} Ln\frac{K}{ < E_n-E_m > _{AV}}$$
最近评论