7 Jun

《虚拟的实在(2)》——为什么引力如此复杂?

上一篇文章里我已经从我自己的理解角度简单说了一下场论的必要性,这次让我们再次谈到这个话题,企图在文字层面上得到更深入的认识。

上一两周的时间,我一直在找资料,主要是线性引力的资料,并且发现了很多有趣的东西,在此一并与大家分享一下。首先,当我在Google中输入“线性引力”时,我发现了一本“奇书”,一本名副其实的“巨著”——《引力论》!洋洋1300多页的大作,三位“超级巨星”——C.W.麦思纳(Charles W.Misner)、K.S.索恩(Kip S.Thorne)、J.A.惠勒(John Archibald Wheeler)——联合编写,恐怕再也找不到哪本书可以PK它的“全明星阵容”了。该书英文名为Gravitation,中文是由台湾翻译的,繁体中文版。全书讲述了引力的研究历史和发展情况,更重要的是几乎每一处历史都给出了数学论证!最最重要的,作者惠勒还是跟爱因斯坦同一个研究时代的人,我们可以最真实的感受到那年代的研究。看到这里,我就迫不及待地想买了,由于各种原因,我们很难买到,到图书馆找,发现有英文版的,就马上借过来了,另外因为买不到中文版,我只好到网上买了电子版,然后打印出来了。不过不是很清晰,而且自我感觉中文翻译不是很好(当然,已经够我们阅读了)。

点击阅读全文...

25 Jul

【翻译】星空之夜:夏季恒星的色彩

笔录:在假期基本上是没有什么机会接触到英语的,平时看的数学物理书一般都是中文版的,因为现在学得还很浅,很少会有非找英语资料不可的时候。不过英语的重要性不言而喻,因此多练习一下还是必须的。突然想起很久没有翻译过文章了,就到《科学美国人》杂志上找了一篇有关夏季星空的小短文来练练笔。在此献丑了。

这个夏天的星空之夜,观星爱好者可以看到恒星发出彩虹般的色彩。
By Joe Rao and SPACE.com

点击阅读全文...

28 Dec

《费恩曼物理讲义》在线版

在线阅读地址:
http://www.feynmanlectures.caltech.edu/

刚在浏览《朗道集结号》的微博时,发现了这一造福大众的消息。难得的是,这个在线版通过MathJax使用Latex排版,阅读效果完全丝毫不输于纸质版的,还可以自由复制。只是遗憾只有英文版的,也许有一天心血来潮,我也弄个在线的中文版出来,呵呵。一切皆有可能。

费曼的物理讲义是一套地地道道的物理书,它是一次美妙的物理之旅。纵使你可能已经读过相当多的物理教材,但是读读费曼的讲义还是大有裨益的,它给我们讲述了什么才是物理,怎么才能学物理。

30 Jan

祝大家马年快乐!

愿大家“马上”事事如意!
愿大家的人生永远马到功成~
愿大家在科学道路上马力十足^_^

送大家“马头星云”,祝大家“马年幸运”!

影像提供与版权: Marco Burali, Tiziano Capecchi, Marco Mancini (Osservatorio MTM)

影像提供与版权: Marco Burali, Tiziano Capecchi, Marco Mancini (Osservatorio MTM)

点击阅读全文...

10 Oct

从费马大定理谈起(十):x^3+y^3=z^3+w^3

Ramanujan

Ramanujan

在正式开始数学之前,我们不妨先说一个关于印度著名数学天才——拉马努金的轶事。拉马努金病重,哈代前往探望。哈代说:“我乘出租车来,车牌号码是1729,这数真没趣,希望不是不祥之兆。”拉马努金答道:“不,那是个有趣得很的数。可以用两个立方之和来表达而且有两种表达方式的数之中,1729是最小的。”(即$1729 = 1^3+12^3 = 9^3+10^3$,后来这类数称为的士数。)利特尔伍德回应这宗轶闻说:“每个整数都是拉马努金的朋友。”(来自维基百科

从这则轶事中,我们发现,确实存在的某些整数,可以表示为两种不同的立方和,换句话说,不定方程:
$$x^3+y^3=z^3+w^3$$

点击阅读全文...

17 Nov

[转载] 做数学一定要是天才吗?

(译自 陶哲轩 博客, 译者 liuxiaochuang)
(英文原文:Does one have to be a genius to do maths?)

这个问题的回答是一个大写的:不!为了达到对数学有一个良好的,有意义的贡献的目的,人们必须要刻苦努力;学好自己的领域,掌握一些其他领域的知识和工具;多问问题;多与其他数学工作者交流;要对数学有个宏观的把握。当然,一定水平的才智,耐心的要求,以及心智上的成熟性是必须的。但是,数学工作者绝不需要什么神奇的“天才”的基因,什么天生的洞察能力;不需要什么超自然的能力使自己总有灵感去出人意料的解决难题。

大众对数学家的形象有一个错误的认识:这些人似乎都使孤单离群的(甚至有一点疯癫)天才。他们不去关注其他同行的工作,不按常规的方式思考。他们总是能够获得无法解释的灵感(或者经过痛苦的挣扎之后突然获得),然后在所有的专家都一筹莫展的时候,在某个重大的问题上取得了突破的进展。这样浪漫的形象真够吸引人的,可是至少在现代数学学科中,这样的人或事是基本没有的。在数学中,我们的确有很多惊人的结论,深刻的定理,但是那都是经过几年,几十年,甚至几个世纪的积累,在很多优秀的或者伟大的数学家的努力之下一点一点得到的。每次从一个层次到另一个层次的理解加深的确都很不平凡,有些甚至是非常的出人意料。但尽管如此,这些成就也无不例外的建立在前人工作的基础之上,并不是全新的。(例如, Wiles 解决费马最后定理的工作,或者Perelman 解决庞加莱猜想的工作。)

点击阅读全文...

18 Dec

迟到一年的建模:再探碎纸复原

前言:一年前国赛的时候,很初级地做了一下B题,做完之后还写了个《碎纸复原:一个人的数学建模》。当时就是对题目很有兴趣,然后通过一天的学习,基本完成了附件一二的代码,对附件三也只是有个概念。而今年我们上的数学建模课,老师把这道题作为大作业让我们做,于是我便再拾起了一年前的那份激情,继续那未完成的一个人的数学建模...

与去年不同的是,这次将所有代码用Python实现了,更简洁,更清晰,甚至可能更高效~~以下是论文全文。

研究背景

2011年10月29日,美国国防部高级研究计划局(DARPA)宣布了一场碎纸复原挑战赛(Shredder Challenge),旨在寻找到高效有效的算法,对碎纸机处理后的碎纸屑进行复原。[1]该竞赛吸引了全美9000支参赛队伍参与角逐,经过一个多月的时间,有一支队伍成功完成了官方的题目。

近年来,碎纸复原技术日益受到重视,它显示了在碎片中“还原真相”的可能性,表明我们可以从一些破碎的片段中“解密”出原始信息来。另一方面,该技术也和照片处理领域中的“全景图拼接技术”有一定联系,该技术是指通过若干张不同侧面的照片,合成一张完整的全景图。因此,分析研究碎纸复原技术,有着重要的意义。

点击阅读全文...

31 Dec

我的写论文软件组合

思维导图

思维导图

这学期的数学建模课,对笔者来说,基本上就是一个锻炼论文写作和Python技能的过程。不过是写论文还是写博客,我都致力于写出符合自己审美观的作品,因此我才会选择$\LaTeX$,我才会选择Python。$\LaTeX$写出来的科学论文是公认的标准而好看的格式,而Python,的确可以作出漂亮的图,也可以简洁地完成所需要的数值计算。我越来越发现,在数学建模、写作方面,除了必不可少的符号推导部分(这部分只能用Mathematica),我已经离不开Python了。

为什么还要求漂亮?内容好不就行了吗?的确,内容才是主要的,但是如果能把展示效果美化一下,而且又不耗费更多的功夫,那么何乐而不为呢?

点击阅读全文...