16 Oct

【理解黎曼几何】4. 联络和协变导数

向量与联络

当我们在我们的位置建立起自己的坐标系后,我们就可以做很多测量,测量的结果可能是一个标量,比如温度、质量,这些量不管你用什么坐标系,它都是一样的。当然,有时候我们会测量向量,比如速度、加速度、力等,这些量都是客观实体,但因为测量结果是用坐标的分量表示的,所以如果换一个坐标,它的分量就完全不一样了。

假如所有的位置都使用同样的坐标,那自然就没有什么争议了,然而我们前面已经反复强调,不同位置的人可能出于各种原因,使用了不同的坐标系,因此,当我们写出一个向量$A^{\mu}$时,严格来讲应该还要注明是在$\boldsymbol{x}$位置测量的:$A^{\mu}(\boldsymbol{x})$,只有不引起歧义的情况下,我们才能省略它。

到这里,我们已经能够进行一些计算,比如$A^{\mu}$是在$\boldsymbol{x}$处测量的,而$\boldsymbol{x}$处的模长计算公式为$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$,因此,$A^{\mu}$的模长为$\sqrt{g_{\mu\nu} A^{\mu}A^{\nu}}$,它是一个客观实体。

如图,可以在球面上每一点建立不同的局部坐标系,至少这些坐标系的竖直方向的轴指向是不一样的。

如图,可以在球面上每一点建立不同的局部坐标系,至少这些坐标系的竖直方向的轴指向是不一样的。

点击阅读全文...

12 Sep

【中文分词系列】 5. 基于语言模型的无监督分词

迄今为止,前四篇文章已经介绍了分词的若干思路,其中有基于最大概率的查词典方法、基于HMM或LSTM的字标注方法等。这些都是已有的研究方法了,笔者所做的就只是总结工作而已。查词典方法和字标注各有各的好处,我一直在想,能不能给出一种只需要大规模语料来训练的无监督分词模型呢?也就是说,怎么切分,应该是由语料来决定的,跟语言本身没关系。说白了,只要足够多语料,就可以告诉我们怎么分词。

看上去很完美,可是怎么做到呢?《2.基于切分的新词发现》中提供了一种思路,但是不够彻底。那里居于切分的新词发现方法确实可以看成一种无监督分词思路,它就是用一个简单的凝固度来判断某处该不该切分。但从分词的角度来看,这样的分词系统未免太过粗糙了。因此,我一直想着怎么提高这个精度,前期得到了一些有意义的结果,但都没有得到一个完整的理论。而最近正好把这个思路补全了。因为没有查找到类似的工作,所以这算是笔者在分词方面的一点原创工作了。

语言模型

首先简单谈一下语言模型。

点击阅读全文...

14 Oct

【理解黎曼几何】1. 一条几何之路

一个月没更新了,这个月花了不少时间在黎曼几何的理解方面,有一些体会,与大家分享。记得当初孟岩写的《理解矩阵》,和笔者所写的《新理解矩阵》,读者反响都挺不错的,这次沿用了这个名称,称之为《理解黎曼几何》。

生活在二维空间的蚂蚁

生活在二维空间的蚂蚁

黎曼几何是研究内蕴几何的几何分支。通俗来讲,就是我们可能生活在弯曲的空间中,比如一只生活在二维球面的蚂蚁,作为生活在弯曲空间中的个体,我们并没有足够多的智慧去把我们的弯曲嵌入到更高维的空间中去研究,就好比蚂蚁只懂得在球面上爬,不能从“三维空间的曲面”这一观点来认识球面,因为球面就是它们的世界。因此,我们就有了内蕴几何,它告诉我们,即便是身处弯曲空间中,我们依旧能够测量长度、面积、体积等,我们依旧能够算微分、积分,甚至我们能够发现我们的空间是弯曲的!也就是说,身处球面的蚂蚁,只要有足够的智慧,它们就能发现曲面是弯曲的——跟哥伦布环球航行那样——它们朝着一个方向走,最终却回到了起点,这就可以断定它们自身所处的空间必然是弯曲的——这个发现不需要用到三维空间的知识。

点击阅读全文...

14 Oct

【理解黎曼几何】2. 从勾股定理到黎曼度量

黎曼度量

几何,英文名是Geometry,原意是大地测量。既然是测量,就必须有参考物,还有得知道如何计算距离。

有了参照物,我们就可以建立坐标系,把每个点的坐标都写下来,至于计算距离,我们有伟大的勾股定理:
$$ds^2 = dx^2 + dy^2 \tag{1} $$
但这里我们忽略了两个问题。

第一个问题是,我们不一定使用直角坐标系,如果使用极坐标,那么应该是
$$ds^2 = dr^2 + r^2 d\theta^2 \tag{2} $$
因此可以联想,最一般的形式应该是
$$ds^2 = E(x^1, x^2)(dx^1)^2 + 2F(x^1, x^2)dx^1 dx^2 + G(x^1, x^2)(dx^2)^2 \tag{3} $$
这里的$x^1,x^2$是广义坐标,使用上标而不是下标来标记序号,是为了跟传统的教材记号一致。那这公式是什么意思呢?其实很简单,正如我们没理由要求全世界都使用人民币一样,我们没必要要求世界各地都使用同一个坐标系,而更合理的做法是,每一处地方都使用自己的坐标系(局部坐标系),然后给出当地计算距离的方法。因此,上述公式正是说,在位置$(x^1, x^2)$处计算向量$(dx^1, dx^2)$的长度的公式(当地的勾股定理)是$ds^2 = E(x^1, x^2)(dx^1)^2 + 2F(x_1, x_2)dx^1 dx^2 + G(x^1, x^2)(dx^2)^2$。

点击阅读全文...

18 Oct

【理解黎曼几何】5. 黎曼曲率

现在我们来关注黎曼曲率。总的来说,黎曼曲率提供了一种方案,让身处空间内部的人也能计算自身所处空间的弯曲程度。俗话说,“不识庐山真面目,只缘身在此山中”,还有“当局者迷,旁观者清”,等等,因此,能够身处空间之中而发现空间中的弯曲与否,是一件很了不起的事情,就好像我们已经超越了我们现有的空间,到了更高维的空间去“居高临下”那样。真可谓“心有多远,路就有多远,世界就有多远”。

如果站在更高维空间的角度看,就容易发现空间的弯曲。比如弯曲空间中有一条测地线,从更高维的空间看,它就是一条曲线,可以计算曲率等,但是在原来的空间看,它就是直的,测地线就是直线概念的一般化,因此不可能通过这种途径发现空间的弯曲性,必须有一些迂回的途径。可能一下子不容易想到,但是各种途径都殊途同归后,就感觉它是显然的了。

怎么更好地导出黎曼曲率来,使得它能够明显地反映出弯曲空间跟平直空间的本质区别呢?为此笔者思考了很长时间,看了不少参考书(《引力与时空》、《场论》、《引力论》等),比较了几种导出黎曼曲率的方式,简要叙述如下。

点击阅读全文...

19 Oct

【理解黎曼几何】6. 曲率的计数与计算(Python)

曲率的独立分量

黎曼曲率张量是一个非常重要的张量,当且仅当它全部分量为0时,空间才是平直的。它也出现在爱因斯坦的场方程中。总而言之,只要涉及到黎曼几何,黎曼曲率张量就必然是核心内容。

已经看到,黎曼曲率张量有4个指标,这也意味着它有$n^4$个分量,$n$是空间的维数。那么在2、3、4维空间中,它就有16、81、256个分量了,可见,要计算它,是一件相当痛苦的事情。幸好,这个张量有很多的对称性质,使得独立分量的数目大大减少,我们来分析这一点。

首先我们来导出黎曼曲率张量的一些对称性质,这部分内容是跟经典教科书是一致的。定义
$$R_{\mu\alpha\beta\gamma}=g_{\mu\nu}R^{\nu}_{\alpha\beta\gamma} \tag{50} $$
定义这个量的原因,要谈及逆变张量和协变张量的区别,我们这里主要关心几何观,因此略过对张量的详细分析。这个量被称为完全协变的黎曼曲率张量,有时候也直接叫做黎曼曲率张量,只要不至于混淆,一般不做区分。通过略微冗长的代数运算(在一般的微分几何、黎曼几何或者广义相对论教材中都有),可以得到
$$\begin{aligned}&R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}\\
&R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}\\
&R_{\mu\alpha\beta\gamma}=R_{\beta\gamma\mu\alpha}\\
&R_{\mu\alpha\beta\gamma}+R_{\mu\beta\gamma\alpha}+R_{\mu\gamma\alpha\beta}=0
\end{aligned} \tag{51} $$

点击阅读全文...

4 Nov

【外微分浅谈】1. 绪论与启发

写在前面

在《理解黎曼几何》系列,笔者分享了一些黎曼几何的“几何”心得,同时遗留了一个问题:怎么真正地去算黎曼张量?MTW的《引力论》中提到了一种基于外微分的方法,可是我不熟悉外微分,遂学习了一番。确实,是《引力论》中快捷计算曲率张量的步骤让笔者决定深入了解外微分的。果然,可观的效益是第一推动力。

这系列文章主要分享一些外微分的学习心得,曾经过多次修改和完善,包含的内容很多,比如外积、活动标架、外微分及其在黎曼几何的一些应用等,最后包括一种计算曲率的有效方式

符号说明:在本系列中,用粗体的字母表示向量、矩阵以及基底,用普通字母来表示标量,它有可能是一个标量函数,也有可能是向量的分量,如无说明,则用$n$表示空间(流形)的维度。本文中同样使用了爱因斯坦求和法则,即相同的上下指标表示$1\sim n$遍历求和,即$\alpha_{\mu}\beta^{\mu}=\sum_{\mu=1}^{n} \alpha_{\mu}\beta^{\mu}$,习惯上将下标写在前面,比如$\alpha_{\mu}\beta^{\mu}$事实上跟$\beta^{\mu}\alpha_{\mu}$等价,但习惯写成前者。常用的一些记号是:$\mu,\nu$表示分量指标,$x^{\mu}$表示点的坐标分量,$dx^{\mu}$表示切向量(微元)的分量,$\alpha,\beta,\omega$等希腊字母也常用来表示微分形式。符号的使用有重复的地方,但符号的意义基本都在符号出现的附近有说明,因此应该不至于混淆。

最后,就是笔者其实对外微分还不是特别有感觉,因此文章中可能出现谬误之处,请读者见谅并指出。本系列命名为“外微分浅谈”,不是谦虚,确实是很浅,认识得浅,说的也很浅~

点击阅读全文...

4 Nov

【外微分浅谈】2. 反对称的威力

内积与外积

向量(这里暂时指的是二维或者三维空间中的向量)的强大之处,在于它定义了内积和外积(更多时候称为叉积、向量积等),它们都是两个向量之间的运算,其中,内积被定义为是对称的,而外积则被定义为反对称的,它们都满足分配律。

沿着书本的传统,我们用$\langle,\rangle$表示内积,用$\land$表示外积,对于外积,更多的时候是用$\times$,但为了不至于出现太多的符号,我们统一使用$\land$。我们将向量用基的形式写出来,比如
$$\boldsymbol{A}=\boldsymbol{e}_{\mu}A^{\mu} \tag{1} $$
其中$\boldsymbol{e}_{\mu}$代表着一组基,而$A^{\mu}$则是向量的分量。我们来计算两个向量$\boldsymbol{A},\boldsymbol{B}$的内积和外积,即
$$\begin{aligned}&\langle \boldsymbol{A}, \boldsymbol{B}\rangle=\langle \boldsymbol{e}_{\mu}A^{\mu}, \boldsymbol{e}_{\nu}B^{\nu}\rangle=\langle\boldsymbol{e}_{\mu},\boldsymbol{e}_{\nu}\rangle A^{\mu}A^{\nu}\\
&\boldsymbol{A}\land \boldsymbol{B}=(\boldsymbol{e}_{\mu}A^{\mu})\land (\boldsymbol{e}_{\nu}B^{\nu})=\boldsymbol{e}_{\mu}\land\boldsymbol{e}_{\nu} A^{\mu}B^{\nu}
\end{aligned} \tag{2} $$

点击阅读全文...