从费马大定理谈起(四):唯一分解整环
By 苏剑林 | 2014-08-17 | 46424位读者 | 引用在小学的时候,数学老师就教我们除法运算:
被除数 = 除数 × 商 + 余数
其中,余数要小于除数。不过,我们也许未曾想到过,这一运算的成立,几乎是自然数$\mathbb{N}$所有算术(数论)运算性质成立的基础!在代数中,上面的运算等式称为带余除法(division algorithm)。如果在一个整环中成立带余除法,那么该整环几乎就拥有了所有理想的性质,比如唯一分解性,也就是我们说的算术基本定理。这样的一个整环,被称为唯一分解整环(Unique factorization domain)。
欧几里得整环
唯一分解定理说的是在一个整环之中,所有的元素都可以分解为该整环的某些“素元素”之积,并且在不考虑元素相乘的顺序和相差单位数的意义之下,分解形式是唯一的。我们通常说的自然数就成立唯一分解定理,比如$60=2^2\times 3\times 5$,这种分解是唯一的,这看起来相当显然,但实际上唯一分解定理相当不显然。首先,并不是所有的整数环都成立唯一分解定理的,我们考虑所有偶数组成的环$2\mathbb{Z}$,要注意,在$2\mathbb{Z}$中,2、6、10、30都是素数,因为它们无法分解成两个偶数的乘积了,但是$60=6\times 10=2\times 30$,存在两种不同的分解,因此在这样的数环中,唯一分解定理就不成立了。
集合上的一个等价关系决定了几何的一个划分,反之亦然,这直观上是不难理解的。但是,如果我要问一个有$n$个元素的有限集合,共有多少种不同的划分呢?以前感觉这也是一个很简单的问题,就没去细想,但前天抽象代数老师提到这是一个有相当难度的题目,于是研究了一下,发现里面大有文章。这里把我的研究过程简单分享一下,读者可以从中看到如何“从零到有”的过程。
以下假设有$n$个元素的有限集合为$\{1,2,\dots,n\}$,记它的划分数为$B(n)$。
前期:暴力计算
$n=3$的情况不难列出:
$$\begin{aligned}&\{\{1,2,3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\\
&\{\{2,3\},\{1\}\},\{\{1\},\{2\},\{3\}\}\end{aligned}$$
实数域上有限维可除代数只有四种
By 苏剑林 | 2014-11-12 | 69839位读者 | 引用今天上近世代数课,老师谈到除环,举了一个非交换的除环的粒子,也就是四元数环,然后谈到“实数域上有限维可除代数只有4种”,也就是实数本身、复数、四元数和八元数(这里的可除代数就是除环)。这句话我听起来有点熟悉,又好像不大对劲。我记得在某本书上看过,定义为实数上的超复数系,如果满足模的积性,那么就只有以上四种。但是老师的那句话表明即使去掉模的积性,也只有四种。我自然以为老师记错了,跟老师辩论了一翻,然后回到宿舍又找资料,最终确定:实数域上有限维可除代数真的只有四种!下面简单谈谈我对这个问题的认识。
当然,这里不可能给出这个命题的证明,因为这个证明相当不简单,笔者目前也没有弄懂,但是粗略感觉一下为什么,还是有可能的。看到这个命题,我们一下子的感觉可能是:怎么会这么少!我们这里通过例子简单说明一下,确实不会多!
我们已经对复数系很熟悉了,也就是定义在实数上的向量空间,基为$\{1,i\}$,并且给定乘法为
$$1\times i=i \times 1=i,\quad 1^2=1,\quad i^2=-1$$
Designing GANs:又一个GAN生产车间
By 苏剑林 | 2020-02-13 | 35679位读者 | 引用在2018年的文章里《f-GAN简介:GAN模型的生产车间》笔者介绍了f-GAN,并评价其为GAN模型的“生产车间”,顾名思义,这是指它能按照固定的流程构造出很多不同形式的GAN模型来。前几天在arxiv上看到了新出的一篇论文《Designing GANs: A Likelihood Ratio Approach》(后面简称Designing GANs或原论文),发现它在做跟f-GAN同样的事情,但走的是一条截然不同的路(不过最后其实是殊途同归),整篇论文颇有意思,遂在此分享一番。
f-GAN回顾
从《f-GAN简介:GAN模型的生产车间》中我们可以知道,f-GAN的首要步骤是找到满足如下条件的函数$f$:
1、$f$是非负实数到实数的映射($\mathbb{R}^* \to \mathbb{R}$);
2、$f(1)=0$;
3、$f$是凸函数。
两生物种群竞争模型:LaTeX+Python
By 苏剑林 | 2014-12-15 | 61479位读者 | 引用写在前面:本文是笔者数学建模课的作业,探讨了两生物种群竞争的常微分方程组模型的解的性质,展示了微分方程定性理论的基本思想。当然,本文最重要的目的,是展示LaTeX与Python的完美结合。(本文的图均由Python的Matplotlib模块生成;而文档则采用LaTeX编辑。)
问题提出
研究在同一个自然环境中生存的两个种群之间的竞争关系。假设两个种群独自在这个自然环境中生存时数量演变都服从Logistic规律,又假设当它们相互竞争时都会减慢对方数量的增长,增长速度的减小都与它们数量的乘积成正比。按照这样的假设建立的常微分方程模型为
$$\begin{equation}\label{eq:jingzhengfangcheng}\left\{\begin{aligned}\frac{dx_1}{dt}=r_1 x_1\left(1-\frac{x_1}{N_1}\right)-a_1 x_1 x_2 \\
\frac{dx_2}{dt}=r_2 x_2\left(1-\frac{x_2}{N_2}\right)-a_2 x_1 x_2\end{aligned}\right.\end{equation}$$
本文分别通过定量和定性两个角度来分析该方程的性质。
ODE的坐标变换
熟悉理论力学的读者应该能够领略到变分法在变换坐标系中的作用。比如,如果要将下面的平面二体问题方程
$$\left\{\begin{aligned}\frac{d^2 x}{dt^t}=\frac{-\mu x}{(x^2+y^2)^{3/2}}\\
\frac{d^2 y}{dt^t}=\frac{-\mu y}{(x^2+y^2)^{3/2}}\end{aligned}\right.\tag{1}$$
变换到极坐标系下,如果直接代入计算,将会是一道十分繁琐的计算题。但是,我们知道,上述方程只不过是作用量
$$S=\int \left[\frac{1}{2}\left(\dot{x}^2+\dot{y}^2\right)+\frac{\mu}{\sqrt{x^2+y^2}}\right]dt\tag{2}$$
变分之后的拉格朗日方程,那么我们就可以直接对作用量进行坐标变换。而由于作用量一般只涉及到了一阶导数,因此作用量的变换一般来说比较简单。比如,很容易写出,$(2)$在极坐标下的形式为
$$S=\int \left[\frac{1}{2}\left(\dot{r}^2+r^2\dot{\theta}^2\right)+\frac{\mu}{r}\right]dt\tag{3}$$
对$(3)$进行变分,得到的拉格朗日方程为
$$\left\{\begin{aligned}&\ddot{r}=r\dot{\theta}^2-\frac{\mu}{r^2}\\
&\frac{d}{dt}\left(r^2\dot{\theta}\right)=0\end{aligned}\right.\tag{4}$$
就这样完成了坐标系的变换。如果想直接代入$(1)$暴力计算,那么请参考《方程与宇宙》:二体问题的来来去去(一)
海伦公式的一个别致的物理推导
By 苏剑林 | 2015-03-27 | 54133位读者 | 引用海伦公式是已知三角形三边的长度$a,b,c$来求面积$S$的公式,是一个相当漂亮的公式,它不算复杂,同时它关于$a,b,c$是对称的,充分体现了三边的同等地位。可是,这样具有对称美的公式推导,往往要经过一个不对称的过程,比如维基百科上的证明,这未免有点美中不足。本文的目的,就是想为此补充一个对称的推导。本文题目为“物理推导”,关键在于“推导”而不是“证明”,同时这里的“物理”并非是通过物理类比而来,而是推导的思想和方法很具有“物理味道”。
$$\sqrt{p(p-a)(p-b)(p-c)}$$
在推导开始之前,笔者给出一个评论:海伦公式似乎是由三边长求三角形面积的所有可能的公式之中最简单的一个。
你所没有思考过的平行线问题
By 苏剑林 | 2015-03-17 | 37305位读者 | 引用本文的主题是平行线,了解数学的朋友可能会想我会写有关非欧几何的内容。但这次不是,本文的内容纯粹是我们从小就开始学习的欧氏几何,基于“欧几里得第五公设”(又称平行公设)。但即便是从小就学习的欧氏几何中的平行线,也许里边的很多问题我们都没有思考清楚。因为平行是几何中非常基本的情形,因此,在讨论这种基本命题的时候,相当容易会出现循环论证、甚至本末倒置的情况。
我们从初中开始就被灌输“同位角相等,两直线平行”、“内错角相等,两直线平行”之类的平行线判断法则,当然,还少不了的是“过直线外一点只能作一条直线与已知直线平行”。但是,这些内容之中,有多少是基本的公理,有多少是可以证明的,该如何证明,我想很多人都理解不清楚,我自己也没有一个很好的答案。那些在初中教授平行线的老师们,估计也没多少个能够把它说清楚的。后来我发现,我居然不会证明“同位角相等,两直线平行”,“欧几里得第五公设”好像并没有告诉我们这个判定法则呀。于是,我翻看了一下初中的数学教科书,发现原来当初“同位角相等,两直线平行”这一判定法则是不加证明地让我们接受的,无怪乎我怎么也想不到关于这一法则的简单的证明...
于是,我想写这篇文章,为大家理解平行线的整个逻辑提供一点参考。
最近评论