当概率遇上复变:随机游走与路径积分
By 苏剑林 | 2014-06-04 | 24033位读者 | 引用我们在上一篇文章中已经看到,随机游走的概率分布是正态的,而在概率论中可以了解到正态分布(几乎)是最重要的一种分布了。随机游走模型和正态分布的应用都很广,我们或许可以思考一个问题,究竟是随机游走造就了正态分布,还是正态分布造就了随机游走?换句话说,哪个更本质些?个人就自己目前所阅读到的内容来看,随机游走更本质些,随机游走正好对应着普遍存在的随机不确定性(比如每次测量的误差),它的分布正好就是正态分布,所以正态分布才应用得如此广泛——因为随机不确定性无处不在。
下面我们来考虑随机游走的另外一种描述方式,原则上来说,它更广泛,更深刻,其大名曰“路径积分”。
当概率遇上复变:从二项分布到泊松分布
By 苏剑林 | 2015-01-13 | 25267位读者 | 引用泊松分布,适合于描述单位时间内随机事件发生的次数的概率分布,如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数等。[维基百科]泊松分布也可以作为小概率的二项分布的近似,其推导过程在一般的概率论教材都会讲到。可是一般教材上给出的证明并不是那么让人赏心悦目,如《概率论与数理统计教程》(第二版,茆诗松等编)的第98页就给出的证明过程。那么,哪个证明过程才更让人点赞呢?我认为是利用母函数的证明。
二项分布的母函数为
$$\begin{equation}(q+px)^n,\quad q=1-p\end{equation}$$
无监督分词和句法分析!原来BERT还可以这样用
By 苏剑林 | 2020-06-10 | 87028位读者 | 引用BERT的一般用法就是加载其预训练权重,再接一小部分新层,然后在下游任务上进行finetune,换句话说一般的用法都是有监督训练的。基于这个流程,我们可以做中文的分词、NER甚至句法分析,这些想必大家就算没做过也会有所听闻。但如果说直接从预训练的BERT(不finetune)就可以对句子进行分词,甚至析出其句法结构出来,那应该会让人感觉到意外和有趣了。
本文介绍ACL 2020的论文《Perturbed Masking: Parameter-free Probing for Analyzing and Interpreting BERT》,里边提供了直接利用Masked Language Model(MLM)来分析和解释BERT的思路,而利用这种思路,我们可以无监督地做到分词甚至句法分析。
澳洲恐龙洞穴揭示气候变化
By 苏剑林 | 2009-07-14 | 27379位读者 | 引用科学家计划研制造云船对抗全球变暖(图)
By 苏剑林 | 2009-08-12 | 24343位读者 | 引用世界各国能否联手应对气候变化?
By 苏剑林 | 2009-08-18 | 25245位读者 | 引用纠缠的时空(一):洛仑兹变换的矩阵
By 苏剑林 | 2013-02-01 | 39833位读者 | 引用我现在是越来越佩服爱因斯坦了,他的相对论是他天才的思想的充分体现。只有当相对论提出之后,宏观物理的大多数现象和规律才得到了统一的描述。狭义相对论中爱因斯坦对我们速度叠加常识的否定已经显示了他莫大的勇气,而一项头脑风暴性的工作——广义相对论则将他惊人的创造力体现得完美无瑕。我是被量子力学的数学吸引的,于相对论则是被相对论美妙的逻辑体系吸引。当然,其中也有相当美妙的数学。
狭义相对论中的核心内容之一就是被称为洛仑兹变换的东西,这在相对论发表之前已经由洛仑兹推导出来了,只不过他不承认他的物理意义,也就没有就此进行一次物理革命,革命的任务则由爱因斯坦完成。很久前我就已经看过洛仑兹变换的推导,那是直接设一种线性关系来求解的。但是我总感觉那样的推导不够清晰(也许是我的理解方式有问题吧),而且没有说明狭义相对论的两条原理如何体现出现。所以在研究过矩阵之后,我就尝试用矩阵来推导洛仑兹变换,发现效果挺好的,而且我觉得能够体现出相对论中的对称性。
两条原理
1、狭义相对性原理:在所有惯性系中,物理定律有相同的表达形式。这是力学相对性原理的推广,它适用于一切物理定律,其本质是所有惯性系平权。
2、光速不变原理:所有惯性系中,真空中的光速都等于c=299 792 458 m/s,与光源运动无关。迈克耳孙-莫雷实验是其有力证明。
纠缠的时空(二):洛仑兹变换的矩阵(续)
By 苏剑林 | 2013-02-27 | 20755位读者 | 引用在上一篇文章中,我们以矩阵的方式推导出了洛仑兹变换。矩阵表述不仅仅具有形式上的美,还具有很重要的实用价值,比如可以很方便地寻找各种不变量。当洛仑兹变换用矩阵的方式表达出来后,很多线性代数中已知的理论都可以用在上边。在这篇小小的续集中,我们将尝试阐述这个思想。
本文中,继续设光速$c=1$。
我们已经得到了洛仑兹变换的矩阵形式:
\begin{equation}\left[\begin{array}{c} x\\t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}x'\\t' \end{array}\right]\end{equation}
最近评论