7 Oct

班门弄斧:Python的代码能有多简洁?

此文很水,高手略过...

Python以它的开发效率而闻名,优秀的开发效率自然意味着它能够用更少的代码实现更多的功能。那么,对于同一个问题,Python的代码能有多简洁?而我们怎么平衡开发效率和运行效率?笔者学了几个月Python,略懂一点,在此班门弄斧一翻。

在此,我们来编程计算
$$\sum_{n=0}^{10} n^2$$
这当然是一道非常简单的习题。按照一般思路,写出来的最自然的代码就是:

s=0
for i in range(11):
    s = s + i**2

print(s)

点击阅读全文...

20 Jan

有限素域上的乘法群是循环群

对于任意的素数$p$,集合$\mathbb{Z}_p=\{0,1,2,\dots,p-1\}$在模$p$的加法和乘法之下,构成一个域,这是学过抽象代数或者初等数论的读者都会知道的一个事实。其中,根据域的定义,$\mathbb{Z}_p$首先要在模$p$的加法下成为一个交换群,而且由于$\mathbb{Z}_p$的特殊性,它还是一个循环群,这也是比较平凡的事实。但是,考虑乘法呢?

首先,$0$是没有逆元的,我们考虑乘法,是在$\mathbb{Z}^\cdot _p=\mathbb{Z}_p \verb|\| \{0\}=\{1,2,\dots,p-1\}$上考虑的。如果我说,$\mathbb{Z}^\cdot _p$在模$p$之下的乘法也作成一个循环群,这结论就不是很平凡的了!然而这确实是事实,对于所有的素数$p$均成立。而有了这事实,数论中的一些结论就会相当显然了,比如当$d\mid (p-1)$时,$\mathbb{Z}_p$中的$d$次剩余就只有$\frac{p-1}{d}$个了,这是循环群的基本结论。

在《数学天书中的证明》一书中,有该结论的一个证明,但这个证明是存在性的,而我在另外一本书上也看到过类似的存在性证明,也就是说,似乎流行的证明都是存在性的,它告诉我们$\mathbb{Z}^\cdot _p$是一个循环群,但是没告诉我们怎么找到它的生成元。而事实上,高斯在他的《算术探索》中就给出了一个构造性的证明。(在数论中,本文的结论是“原根”那一章的基本知识。)下面笔者正是要重复高斯的证明,供读者参考。

点击阅读全文...

30 May

【备忘】维基百科与DNSCrypt

中文维基百科的域名zh.wikipedia.org于5月19日被关键字屏蔽和DNS污染,目前从中国已无法访问中文维基百科,中文维基百科的域名也无法解析出正确的IP地址,而英文维基百科目前未受影响,可以正常访问。

来自“月光博客”:http://www.williamlong.info/archives/4240.html

类似的新闻还有:http://www.freebuf.com/news/68011.html

点击阅读全文...

4 Mar

趣题:如何编程列出一个集合的所有子集

最近在一个编程中,需要实现一个功能,就是给定集合,如何列出它的所有子集。有兴趣的读者不妨自己想想怎么做?

在找资料的时候,发现了一个很奇妙的方法。

点击阅读全文...

29 Mar

【备忘】电脑远程控制手机的解决方案

最近由于数据挖掘上的研究,需要想办法通过电脑远程控制手机(主要是安卓),遂查找了网络上的一些工具,这里记录一下结果,纯粹做备忘。有同样需要的读者可以参考。

之前在阿里云的服务器和树莓派上都做过远程控制的,记得Linux下的远程控制工具叫做VNC,于是我google和百度了vnc server android、vnc server apk等,发现这类工具确实不少,比如最知名的当属droid vnc server。但是同类的几个软件我都测试了,它确实是VNC软件,但是在我的几个安卓4.x上,显示都不正常(花屏),无奈抛弃了。再看一下日期,发现原来这些软件基本到2013年就停止更新了,一般支持到安卓2.3而已,怪不得。

点击阅读全文...

12 Apr

【备忘】用树莓派3做无线路由器

3月初发布的树莓派3自带了WiFi和蓝牙,再加上它本来就有一个网口,因此俨然就是一台无线路由器了。我也忍不住入手了一个,打算用来做路由器和NAS。树莓派做路由器的教程已经有很多了,当然,基本都是基于树莓派2的,3之前的版本都没有自带WiFi,因此需要自己配无线网卡,而3自带了无线网卡,配置就方便多了。参考了两篇外文教程,成功配置,在这里记录一下。

参考教程:
https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/

https://gist.github.com/Lewiscowles1986/fecd4de0b45b2029c390#file-rpi3-ap-setup-sh

点击阅读全文...

19 Nov

更别致的词向量模型(一):simpler glove

如果问我哪个是最方便、最好用的词向量模型,我觉得应该是word2vec,但如果问我哪个是最漂亮的词向量模型,我不知道,我觉得各个模型总有一些不足的地方。且不说试验效果好不好(这不过是评测指标的问题),就单看理论也没有一个模型称得上漂亮的。

本文讨论了一些大家比较关心的词向量的问题,很多结论基本上都是实验发现的,缺乏合理的解释,包括:

如果去构造一个词向量模型?

为什么用余弦值来做近义词搜索?向量的内积又是什么含义?

词向量的模长有什么特殊的含义?

为什么词向量具有词类比性质?(国王-男人+女人=女王)

得到词向量后怎么构建句向量?词向量求和作为简单的句向量的依据是什么?

这些讨论既有其针对性,也有它的一般性,有些解释也许可以直接迁移到对glove模型和skip gram模型的词向量性质的诠释中,读者可以自行尝试。

围绕着这些问题的讨论,本文提出了一个新的类似glove的词向量模型,这里称之为simpler glove,并基于斯坦福的glove源码进行修改,给出了本文的实现,具体代码在Github上。

点击阅读全文...

11 May

【致敬】费曼诞辰100年

费曼 - 图片来自于百度百科

费曼 - 图片来自于百度百科

2018年5月11日,是费曼诞辰100周年。

首先看到这个信息,是昨晚凌晨在“京师物理”公众号上的《纪念费曼|费曼的十大贡献》一文。我本身也算是个费曼迷,不过我对这些生日生肖信息完全记不住,我比较深刻的是费曼的故事,包括科学的和生活的。

点击阅读全文...