14 Mar

泰迪杯赛前培训之数据挖掘与建模“慢谈”

泰迪杯赛前培训

泰迪杯赛前培训

应广州泰迪科技公司之邀,给泰迪杯数据挖掘竞赛录制了赛前培训视频,内容基本上是各种常见的数学模型及入门用法,以一种比较独特的思路,将朴素贝叶斯、HMM、逻辑回归、组合模型、神经网络、深度学习等等串了起来。视频讲解难度为入门级,当然,真的要融合贯通所有内容,恐怕要骨灰级。

不管怎么样,简单分享一下,欢迎大家留言讨论、建议甚至批评。

PPT下载:泰迪杯赛前培训ppt.zip

视频地址:http://moodle.tipdm.com/course/view.php?id=18

24 Jul

基于Xception的腾讯验证码识别(样本+代码)

去年的时候,有幸得到网友提供的一批腾讯验证码样本,因此也研究了一下,过程记录在《端到端的腾讯验证码识别(46%正确率)》中。

后来,这篇文章引起了不少读者的兴趣,有求样本的,有求模型的,有一起讨论的,让我比较意外。事实上,原来的模型做得比较粗糙,尤其是准确率难登大雅之台,参考价值不大。这几天重新折腾了一下,弄了个准确率高一点的模型,同时也把样本公开给大家。

模型的思路跟《端到端的腾讯验证码识别(46%正确率)》是一样的,只不过把CNN部分换成了现成的Xception结构,当然,读者也可以换VGG、Resnet50等玩玩,事实上对验证码识别来说,这些模型都能够胜任。我挑选Xception,是因为它层数不多,模型权重也较小,我比较喜欢而已。

代码

点击阅读全文...

3 Jul

《交换代数导引》参考答案

这学期我们的一门课是《交换代数》,是本科抽象代数的升级版。我们用的教材是Atiyah的《Introduction to Commutative Algebra》(交换代数导引),而且根据老师的上课安排,还需要我们把部分课后习题完成并讲解...不得不说这门课上得真累啊~

习题做到后面,我干脆懒得起草稿了,直接把做的答案用LaTeX录入了,既方便排版也方便修改。在这里分享给有需要的读者~答案是用中文写的,注释比较详细,适合刚学这门课的同学~

笔者所做的部分:《交换代数导引》参考答案.pdf

当然这份答案只包括老师对我们的要求的那部分习题,下面是网上搜索到的完整的习题解答,英文版的:

网上找到的答案:Jeffrey Daniel Kasik Carlson - Exercises to Atiya.pdf

如果答案有问题,欢迎留言指出。

27 Oct

什么时候多进程的加速比可以大于1?

多进程或者多线程等并行加速目前已经不是什么难事了,相信很多读者都体验过。一般来说,我们会有这样的结论:多进程的加速比很难达到1。换句话说,当你用10进程去并行跑一个任务时,一般只能获得不到10倍的加速,而且进程越多,这个加速比往往就越低。

要注意,我们刚才说“很难达到1”,说明我们的潜意识里就觉得加速比最多也就是1。理论上确实是的,难不成用10进程还能获得20倍的加速?这不是天上掉馅饼吗?不过我前几天确实碰到了一个加速比远大于1的例子,所以在这里跟大家分享一下。

词频统计

我的原始任务是统计词频:我有很多文章,然后我们要对这些文章进行分词,最后汇总出一个词频表出来。一般的写法是这样的:

tokens = {}

for text in read_texts():
    for token in tokenize(text):
        tokens[token] = tokens.get(token, 0) + 1

这种写法在我统计THUCNews全部文章的词频时,大概花了20分钟。

点击阅读全文...

29 Dec

SquarePlus:可能是运算最简单的ReLU光滑近似

ReLU函数,也就是$\max(x,0)$,是最常见的激活函数之一,然而它在$x=0$处的不可导通常也被视为一个“槽点”。为此,有诸多的光滑近似被提出,比如SoftPlus、GeLU、Swish等,不过这些光滑近似无一例外地至少都使用了指数运算$e^x$(SoftPlus还用到了对数),从“精打细算”的角度来看,计算量还是不小的(虽然当前在GPU加速之下,我们很少去感知这点计算量了)。最近有一篇论文《Squareplus: A Softplus-Like Algebraic Rectifier》提了一个更简单的近似,称为SquarePlus,我们也来讨论讨论。

需要事先指出的是,笔者是不建议大家花太多时间在激活函数的选择和设计上的,所以虽然分享了这篇论文,但主要是提供一个参考结果,并充当一道练习题来给大家“练练手”。

定义

SquarePlus的形式很简单,只用到了加、乘、除和开方:
\begin{equation}\text{SquarePlus}(x)=\frac{x+\sqrt{x^2+b}}{2}\end{equation}

点击阅读全文...

10 May

logsumexp运算的几个不等式

$\text{logsumexp}$是机器学习经常遇到的运算,尤其是交叉熵的相关实现和推导中都会经常出现,同时它还是$\max$的光滑近似(参考《寻求一个光滑的最大值函数》)。设$x=(x_1,x_2,\cdots,x_n)$,$\text{logsumexp}$定义为
\begin{equation}\text{logsumexp}(x)=\log\sum_{i=1}^n e^{x_i}\end{equation}
本文来介绍$\text{logsumexp}$的几个在理论推导中可能用得到的不等式。

基本界

记$x_{\max} = \max(x_1,x_2,\cdots,x_n)$,那么显然有
\begin{equation}e^{x_{\max}} < \sum_{i=1}^n e^{x_i} \leq \sum_{i=1}^n e^{x_{\max}} = ne^{x_{\max}}\end{equation}
各端取对数即得
\begin{equation}x_{\max} < \text{logsumexp}(x) \leq x_{\max} + \log n\end{equation}

点击阅读全文...

9 Nov

CoSENT(三):作为交互式相似度的损失函数

《CoSENT(一):比Sentence-BERT更有效的句向量方案》中,笔者提出了名为“CoSENT”的有监督句向量方案,由于它是直接训练cos相似度的,跟评测目标更相关,因此通常能有着比Sentence-BERT更好的效果以及更快的收敛速度。在《CoSENT(二):特征式匹配与交互式匹配有多大差距?》中我们还比较过它跟交互式相似度模型的差异,显示它在某些任务上的效果还能直逼交互式相似度模型。

然而,当时笔者是一心想找一个更接近评测目标的Sentence-BERT替代品,所以结果都是面向有监督句向量的,即特征式相似度模型。最近笔者突然反应过来,CoSENT其实也能作为交互式相似度模型的损失函数。那么它跟标准选择交叉熵相比孰优孰劣呢?本文来补充这部分实验。

点击阅读全文...

27 Jun

哈哈,我的“《圣经》”到了

之前已经稍微提及到了MTW的《引力论》,这本由C.W.麦思纳(Charles W.Misner)、K.S.索恩(Kip S.Thorne)、J.A.惠勒(John Archibald Wheeler)联合编写的广义相对论教材,被誉为引力中的“《圣经》”。自从我看到它的信息开始,我就一直对它念念不忘,一直希望能找到那本台湾翻译的中文版。无奈天朝的各种因素,让我难以如愿。通过翻墙到PChome的全球购物,结合各种手段,我终于买到了这本《圣经》!

引力论1

引力论1

点击阅读全文...