21 Oct

【理解黎曼几何】7. 高斯-博内公式

令人兴奋的是,我们导出黎曼曲率的途径,还能够让我们一瞥高斯-博内公式( Gauss–Bonnet formula)的风采,真正体验一番研究内蕴几何的味道。

高斯-博内公式是大范围微分几何学的一个经典的公式,它建立了空间的局部性质和整体性质之间的联系。而我们从一条几何的路径出发,结合一些矩阵变换和数学分析的内容,逐步导出了测地线、协变导数、曲率张量,现在可以还可以得到经典的高斯-博内公式,可见我们在这条路上已经走得足够远了。虽然过程不尽善尽美,然而并没有脱离这个系列的核心:几何直观。本文的目的,正是分享黎曼几何的一种直观思路,既然是思路,以思想交流为主,不以严格证明为目的。因此,对于大家来说,这个系列权当黎曼几何的补充材料吧。

形式改写

首先,我们可以将式$(48)$重写为更有几何意义的形式。从

点击阅读全文...

4 Nov

【外微分浅谈】2. 反对称的威力

内积与外积

向量(这里暂时指的是二维或者三维空间中的向量)的强大之处,在于它定义了内积和外积(更多时候称为叉积、向量积等),它们都是两个向量之间的运算,其中,内积被定义为是对称的,而外积则被定义为反对称的,它们都满足分配律。

沿着书本的传统,我们用$\langle,\rangle$表示内积,用$\land$表示外积,对于外积,更多的时候是用$\times$,但为了不至于出现太多的符号,我们统一使用$\land$。我们将向量用基的形式写出来,比如
$$\boldsymbol{A}=\boldsymbol{e}_{\mu}A^{\mu} \tag{1} $$
其中$\boldsymbol{e}_{\mu}$代表着一组基,而$A^{\mu}$则是向量的分量。我们来计算两个向量$\boldsymbol{A},\boldsymbol{B}$的内积和外积,即
$$\begin{aligned}&\langle \boldsymbol{A}, \boldsymbol{B}\rangle=\langle \boldsymbol{e}_{\mu}A^{\mu}, \boldsymbol{e}_{\nu}B^{\nu}\rangle=\langle\boldsymbol{e}_{\mu},\boldsymbol{e}_{\nu}\rangle A^{\mu}A^{\nu}\\
&\boldsymbol{A}\land \boldsymbol{B}=(\boldsymbol{e}_{\mu}A^{\mu})\land (\boldsymbol{e}_{\nu}B^{\nu})=\boldsymbol{e}_{\mu}\land\boldsymbol{e}_{\nu} A^{\mu}B^{\nu}
\end{aligned} \tag{2} $$

点击阅读全文...

7 Nov

【外微分浅谈】6. 微分几何

终于开始谈到重点了,就是这部分内容促使我学习外微分的。用外微分可以方便地推导微分几何的一些内容,有时候还能方便计算。其主要根源在于:外微分本身在形式上是微分的推广,因此微分几何的东西能够使用外微分来描述并不出奇;然后,最重要的原因是,外微分把$dx^{\mu}$看成一组基,因此相当于在几何中引入了两组基,一组是本身的向量基(用张量的语言,就是逆变向量的基),这组基可以做对称的内积,另外一组基就是$dx^{\mu}$,这组基可以做反对称的外积。因此,当外微分引入几何时,微分几何就拥有了微分、积分、对称积、反对称积等各种“理想装备”,这就是外微分能够加速微分几何推导的主要原因。

标架的运动

前面已经得到
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{45} $$

点击阅读全文...

16 Nov

为什么勒贝格积分比黎曼积分强?

学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?

黎曼

黎曼

勒贝格

勒贝格

这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。

本是同根生,相煎何太急?

点击阅读全文...

25 Nov

三顾碎纸复原:基于CNN的碎纸复原

赛题回顾

不得不说,2013年的全国数学建模竞赛中的B题真的算是数学建模竞赛中百年难得一遇的好题:题目简洁明了,含义丰富,做法多样,延伸性强,以至于我一直对它念念不忘。因为这个题目,我已经在科学空间写了两篇文章了,分别是《一个人的数学建模:碎纸复原》《迟到一年的建模:再探碎纸复原》。以前做这道题的时候,还只有一点数学建模的知识,而自从学习了数据挖掘、尤其是深度学习之后,我一直想重做这道题,但一直偷懒。这几天终于把它实现了。

如果对题目还不清楚的读者,可以参考前面两篇文章。碎纸复原共有五个附件,分别代表了五种“碎纸片”,即五种不同粒度的碎片。其中附件1和2都不困难,难度主要集中在附件3、4、5,而3、4、5的实现难度基本是一样的。做这道题最容易想到的思路就是贪心算法,即随便选一张图片,然后找到与它最匹配的图片,然后继续匹配下一张。要想贪心算法有效,最关键是找到一个良好的距离函数,来判断两张碎片是否相邻(水平相邻,这里不考虑垂直相邻)。

点击阅读全文...

14 Dec

端到端的腾讯验证码识别(46%正确率)

最新结果请参考:http://kexue.fm/archives/4503/

前段时间有幸得到了一个网友提供的一批带标签的腾讯验证码样本(验证码样板:http://captcha.qq.com/getimage),于是抽了点时间,测试了一下验证码识别的模型。

腾讯验证码

腾讯验证码

样本

这批验证码比较简单,4位的英文字母,有大小写,但输入的时候不区分大小写,图案有一定的混淆,传统的基于分割的方案估计比较难办。端到端的方案是,直接将验证码输入,做几个卷积层,然后连接几个分类器(26分类),然后就直接输出四个字母标签了。其实还真没有什么好说的,有样本就能做了,而且这个框架是通用的,可以用到区分大小写的情形(52分类),也可以用到英文数字混合的情形(再加10个类别而已)。

点击阅读全文...

31 Dec

2017年快乐!Responsive Geekg for Typecho

2016年即将画上句号了,在此祝各位读者2017年快乐,新的一年事事大顺哈~

happy new year 2017

happy new year 2017

所谓新年新气象,科学空间也换上新外衣。咦,怎么感觉没什么变化?别急,请继续看下去。

点击阅读全文...

7 Jan

基于遗忘假设的平滑公式

统计是通过大量样本来估计真实分布的过程,通常与统计相伴出现的一个词是“平滑”,即对统计结果打折扣的处理过程。平滑的思想来源于:如果样本空间非常大,那么统计的结果是稀疏的,这样由于各种偶然因素的存在,导致了小的统计结果不可靠,如频数为1的结果可能只是偶然的结果,其频率并不一定近似于$1/N$,频数为0的不一定就不会出现。这样我们就需要对统计结果进行平滑,使得结论更为可靠。

平滑的方法有很多,这里介绍一种基于遗忘假设的平滑公式。假设的任务为:我们要从一批语料中,统计每个字的字频。我们模仿人脑遗忘的过程,假设这个字出现一次,我们脑里的记忆量就增加1,但是如果一个周期内(先不管这个周期多大),这个字都没有出现,那么脑里的记忆量就变为原来的$\beta$比例。假设字是周期性出现的,那么记忆量$A_n$就满足如下递推公式
$$A_{n+1} = \beta A_n + 1$$

点击阅读全文...