2 Oct

关于行星留周期的几何讨论

关于行星留的周期的计算,我们之前已经讨论过这个问题,利用的是微积分的方法。也许不少还没有高数基础的朋友会感到很头晕,因此在这里给出一个从几何方面讨论的推导。

关于留,很多人认为就是行星相对于地球的速度为0的时刻,其实这个说法稍欠准确,严格来讲应该要将速度改为“角速度”或“切向速度”(天文的切向就是指与视线方向垂直的方向)。实际的运动中,没有哪一瞬间行星相对于地球的运动速度是为0的。根据这句话,我们可以作出下面的图(依旧只考虑正圆运动):

行星留-运动分析

行星留-运动分析

点击阅读全文...

3 Oct

《向量》系列——5.平面向量微分方程与复数

首先我们考虑一个复微分方程
$$\dot{z}=f(z,t)\tag{1}$$如果令$z=x+yi,f(z,t)=f(x+yi,t)=g(x,y,t)+i*h(x,y,t)$,则方程对应于
$$\begin{aligned}\dot{x}=g(x,y,t) \\ \dot{y}=h(x,y,t)\end{aligned}$$
这说明,二元微分方程在一定程度上等价于复微分方程。

点击阅读全文...

4 Oct

哈勃定律——宇宙各向同性的体现

universe_mystery_expand

universe_mystery_expand

1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究。当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系。

不少宇宙学的书籍中都提到了标题,那么,为什么哈勃定律是宇宙各向同性的体现?或者说为什么宇宙各向同性就必然导致哈勃定律?

首先我们得需要了解一下宇宙学原理,它告诉我们宇宙在大尺度范围是均匀的、各向同性的。基于这个原理,我们会得到一些很奇怪的东西,如宇宙中的每一点都是宇宙的中心。另外,我们还可以得到:宇宙的(整体)运动情况在每一个方向都应该取相同的形式。

点击阅读全文...

4 Oct

2010诺贝尔生理学或医学奖公布

资料图片:试管婴儿之父、英国科学家罗伯特-爱德华兹

资料图片:试管婴儿之父、英国科学家罗伯特-爱德华兹

诺贝尔奖委员会刚刚宣布,试管婴儿之父、英国科学家罗伯特-爱德华兹因其生育学研究获得今年诺贝尔生理学或医学奖,他的研究曾使400万人得以降生。

点击阅读全文...

5 Oct

2010诺奖再次光临英国——物理学奖

安德烈-盖姆

安德烈-盖姆

康斯坦丁-诺沃肖洛夫

康斯坦丁-诺沃肖洛夫

新浪科技讯 据外国媒体报道,两位在俄罗斯出生的科学家安德烈-盖姆和康斯坦丁-诺沃肖洛夫10月5日因为对石墨烯的“突破性实验”而获得2010年宝贝尔物理学奖,这种材料预计将在电子学发挥重要作用。

点击阅读全文...

7 Oct

欣赏一张图片——I Heart Math

一张很棒的T恤印花,在心形中融汇了数学各个分支领域中最迷人的结论。
考考大家,能从中认出多少个数学研究问题或结论?

I_Heart_MathhecDetail

I_Heart_MathhecDetail

点击阅读全文...

16 Oct

以自然数幂为系数的幂级数

$\sum_{i=0}^{\infty} a_i x^i=a_0+a_1 x+a_2 x^2+a_3 x^3+...$
最近为了数学竞赛,我研究了有关数列和排列组合的相关问题。由于我讨厌为某个问题而设计专门的技巧,所以我偏爱通用的方法,哪怕过程相对麻烦。因此,我对数学归纳法(递推法)和生成函数法情有独钟。前者只需要列出问题的递归关系,而不用具体分析,最终把问题转移到解函数方程上来。后者则巧妙地把数列${a_n}$与幂级数$\sum_{i=0}^{\infty} a_i x^i$一一对应,巧妙地通过代数运算或微积分运算等得到结果。这里我们不用考虑该级数的敛散性,只需要知道它对应着哪一个“母函数”(母函数展开泰勒级数后得到了级数$\sum_{i=0}^{\infty} a_i x^i$)。显然,这两种方法的最终,都是把问题归结为代数问题。

点击阅读全文...

23 Oct

科学空间:2010年11月重要天象

2009leo-songjian

2009leo-songjian

十一月夜空的主角,将是几个颇具看点的流星雨,南、北金牛以及狮子座流星雨的极大非常值得期待。当然,这段时间观测条件最好的行星还是木星,而到了月底,水星和金星的观测条件也将逐渐转好。其中水星是昏星,日落后在西方的低空中隐约可见,而金星作为晨星将在日出前出现在东方天空中,亮度可达-4.6等。

点击阅读全文...