大词表语言模型在续写任务上的一个问题及对策
By 苏剑林 | 2023-09-13 | 29685位读者 | 引用对于LLM来说,通过增大Tokenizer的词表来提高压缩率,从而缩短序列长度、降低解码成本,是大家都喜闻乐见的事情。毕竟增大词表只需要增大Embedding层和输出的Dense层,这部分增加的计算量几乎不可感知,但缩短序列长度之后带来的解码速度提升却是实打实的。当然,增加词表大小也可能会对模型效果带来一些负面影响,所以也不能无节制地增加词表大小。本文就来分析增大词表后语言模型在续写任务上会出现的一个问题,并提出参考的解决方案。
优劣分析
增加词表大小的好处是显而易见的。一方面,由于LLM是自回归的,它的解码会越来越慢,而“增大词表 → 提高压缩率 → 缩短序列长度”,换言之相同文本对应的tokens数变少了,也就是解码步数变少了,从而解码速度提升了;另一方面,语言模型的训练方式是Teacher Forcing,缩短序列长度能够缓解Teacher Forcing带来的Exposure Bias问题,从而可能提升模型效果。
哈哈,我的“《圣经》”到了
By 苏剑林 | 2013-06-27 | 54128位读者 | 引用百科翻译:草原上的狐狸(Swift Fox)
By 苏剑林 | 2009-07-07 | 36325位读者 | 引用百科翻译:氢氧化钠(NaOH)的详细介绍
By 苏剑林 | 2009-07-08 | 63024位读者 | 引用对于我们来说,维基百科是一个难得的资料库,但是与其英文版相比,中文版就相形见绌了,就好像本文中所讲的氢氧化钠,在中文版的资料为http://zh.wikipedia.org/w/index.php?title=NaOH&variant=zh-cn;而在英文版的资料为http://en.wikipedia.org/wiki/NaOH 可见英文版本是多么丰富。为了使大家能够更多地了解到科学,笔者特地翻译了一些英文版的维基百科中一些资料。
百科翻译:臭氧的性质
By 苏剑林 | 2009-07-08 | 23626位读者 | 引用臭氧对于我们来说是极为重要的,可以说,没有臭氧,我们都会死于紫外线的强烈照射之下!这里翻译了一些关于臭氧的信息,来源于http://en.wikipedia.org/wiki/Ozone,中文维基为http://zh.wikipedia.org/w/index.php?title=%E8%87%AD%E6%B0%A7&variant=zh-cn
臭氧,英文名为Ozone或trioxygen,化学式$O_3$,每个臭氧分子含有3个氧原子,属于三原子分子。与氧气是同素异形体(组成元素相同,但是结构不同,所表现出来的性质也不同),但比氧气更不稳定。在地表上的臭氧是一种空气污染物,对人和动物的呼吸道系统会产生有害影响。而大气层上部的臭氧层则能够吸收大量的紫外线,使地球的生物不受过量紫外线的侵害。
最近评论