7 Aug

Transformer升级之路:12、无限外推的ReRoPE?

自从在《Transformer升级之路:11、将β进制位置进行到底》中引入混合进制的思路进一步推广了NTK-aware Scaled RoPE后,笔者感觉类似思路的效果已经达到了上限,想要更大幅度的提升就必须另辟蹊径了。这时候笔者想起了此前构思过的一个思路,该思路由于复杂度较高所以被搁置下了,既然现在已经遇到了瓶颈,那么“唯一的办法就是最好的办法”,于是便将它重拾起来。

万万没想到的是,尽管该方法增加了一些推理复杂度,但它的实验效果却惊人地好——甚至隐约有无限的长度外推能力!因此,笔者迫不及待地撰写了本文来分享该方法。由于形式上跟ReLU激活函数的相似性,所以笔者将该方法命名为“ReRoPE (Rectified Rotary Position Embeddings)”。

重温

我们知道,RoPE形式上是一种绝对位置编码,但实际上给Attention带来的是相对位置信息,即如下的Toeplitz矩阵

点击阅读全文...

28 Mar

Google新作试图“复活”RNN:RNN能否再次辉煌?

当前,像ChatGPT之类的LLM可谓是“风靡全球”。有读者留意到,几乎所有LLM都还是用最初的Multi-Head Scaled-Dot Attention,近年来大量的Efficient工作如线性AttentionFLASH等均未被采用。是它们版本效果太差,还是根本没有必要考虑效率?其实答案笔者在《线性Transformer应该不是你要等的那个模型》已经分析过了,只有序列长度明显超过hidden size时,标准Attention才呈现出二次复杂度,在此之前它还是接近线性的,它的速度比很多Efficient改进都快,而像GPT3用到了上万的hidden size,这意味着只要你的LLM不是面向数万长度的文本生成,那么用Efficient改进是没有必要的,很多时候速度没提上去,效果还降低了。

那么,真有数万甚至数十万长度的序列处理需求时,我们又该用什么模型呢?近日,Google的一篇论文《Resurrecting Recurrent Neural Networks for Long Sequences》重新优化了RNN模型,特别指出了RNN在处理超长序列场景下的优势。那么,RNN能否再次辉煌?

点击阅读全文...

24 Jun

生成扩散模型漫谈(十九):作为扩散ODE的GAN

在文章《生成扩散模型漫谈(十六):W距离 ≤ 得分匹配》中,我们推导了Wasserstein距离与扩散模型得分匹配损失之间的一个不等式,表明扩散模型的优化目标与WGAN的优化目标在某种程度上具有相似性。而在本文,我们将探讨《MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein Gradient Flows》中的研究成果,它进一步展示了GAN与扩散模型之间的联系:GAN实际上可以被视为在另一个时间维度上的扩散ODE!

这些发现表明,尽管GAN和扩散模型表面上是两种截然不同的生成式模型,但它们实际上存在许多相似之处,并在许多方面可以相互借鉴和参考。

思路简介

我们知道,GAN所训练的生成器是从噪声$\boldsymbol{z}$到真实样本的一个直接的确定性变换$\boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{z})$,而扩散模型的显著特点是“渐进式生成”,它的生成过程对应于从一系列渐变的分布$p_0(\boldsymbol{x}_0),p_1(\boldsymbol{x}_1),\cdots,p_T(\boldsymbol{x}_T)$中采样(注:在前面十几篇文章中,$\boldsymbol{x}_T$是噪声,$\boldsymbol{x}_0$是目标样本,采样过程是$\boldsymbol{x}_T\to \boldsymbol{x}_0$,但为了便于下面的表述,这里反过来改为$\boldsymbol{x}_0\to \boldsymbol{x}_T$)。看上去确实找不到多少相同之处,那怎么才能将两者联系起来呢?

点击阅读全文...

28 Jun

生成扩散模型漫谈(二十):从ReFlow到WGAN-GP

上一篇文章《生成扩散模型漫谈(十九):作为扩散ODE的GAN》中,我们介绍了如何将GAN理解为在另一个时间维度上的扩散ODE,简而言之,GAN实际上就是将扩散模型中样本的运动转化为生成器参数的运动!然而,该文章的推导过程依赖于Wasserstein梯度流等相对复杂和独立的内容,没法很好地跟扩散系列前面的文章连接起来,技术上显得有些“断层”。

在笔者看来,《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》所介绍的ReFlow是理解扩散ODE的最直观方案,既然可以从扩散ODE的角度理解GAN,那么必定存在一个从ReFlow理解GAN的角度。经过一番尝试,笔者成功从ReFlow推出了类似WGAN-GP的结果。

理论回顾

之所以说“ReFlow是理解扩散ODE的最直观方案”,是因为它本身非常灵活,以及非常贴近实验代码——它能够通过ODE建立任意噪声分布到目标数据分布的映射,而且训练目标非常直观,不需要什么“弯弯绕绕”就可以直接跟实验代码对应起来。

点击阅读全文...

14 Jul

当生成模型肆虐:互联网将有“疯牛病”之忧?

众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?

近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文一起学习这篇论文,探讨其可能带来的影响。

点击阅读全文...

8 Oct

预训练一下,Transformer的长序列成绩还能涨不少!

作为LLM的主流模型架构,Transformer在各类任务上的总体表现都出色,大多数情况下,Transformer的槽点只是它的平方复杂度,而不是效果——除了一个名为Long Range Arena(下面简称LRA)的Benchmark。一直以来,LRA一直是线性RNN类模型的“主场”,与之相比Transformer在上面有明显的差距,以至于让人怀疑这是否就是Transformer的固有缺陷。

不过,近日论文《Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors》将这“缺失的一环”给补齐了。论文指出,缺乏预训练是Transformer在LRA上效果较差的主要原因,而所有架构都可以通过预训练获得一定的提升,Transformer的提升则更为明显。

旧背景

Long Range Arena(LRA)是长序列建模的一个Benchmark,提出自论文《Long Range Arena: A Benchmark for Efficient Transformers》,从论文标题就可以看出,LRA是为了测试各种Efficient版的Transformer而构建的,里边包含了多种类型的数据,序列长度从1k到16k不等,此前不少Efficient Transformer的工作也都在LRA进行了测试。虽然在代表性方面有些争议,但LRA依然不失为一个测试Efficient Transformer的长序列能力的经典Benchmark。

点击阅读全文...

19 Dec

让炼丹更科学一些(一):SGD的平均损失收敛

很多时候我们将深度学习模型的训练过程戏称为“炼丹”,因为整个过程跟古代的炼丹术一样,看上去有一定的科学依据,但整体却给人一种“玄之又玄”的感觉。尽管本站之前也关注过一些优化器相关的工作,甚至也写过《从动力学角度看优化算法》系列,但都是比较表面的介绍,并没有涉及到更深入的理论。为了让以后的炼丹更科学一些,笔者决定去补习一些优化相关的理论结果,争取让炼丹之路多点理论支撑。

在本文中,我们将学习随机梯度下降(SGD)的一个非常基础的收敛结论。虽然现在看来,该结论显得很粗糙且不实用,但它是优化器收敛性证明的一次非常重要的尝试,特别是它考虑了我们实际使用的是随机梯度下降(SGD)而不是全量梯度下降(GD)这一特性,使得结论更加具有参考意义。

问题设置

设损失函数是$L(\boldsymbol{x},\boldsymbol{\theta})$,其实$\boldsymbol{x}$是训练集,而$\boldsymbol{\theta}\in\mathbb{R}^d$是训练参数。受限于算力,我们通常只能执行随机梯度下降(SGD),即每步只能采样一个训练子集来计算损失函数并更新参数,假设采样是独立同分布的,第$t$步采样到的子集为$\boldsymbol{x}_t$,那么我们可以合理地认为实际优化的最终目标是
\begin{equation}L(\boldsymbol{\theta}) = \lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T L(\boldsymbol{x}_t,\boldsymbol{\theta})\label{eq:loss}\end{equation}

点击阅读全文...

29 May

Transformer升级之路:18、RoPE的底数选择原则

我们知道,在RoPE中频率的计算公式为$\theta_i = b^{-2i/d}$,底数$b$默认值为10000。目前Long Context的主流做法之一是,先在$b=10000$上用短文本预训练,然后调大$b$并在长文本微调,其出发点是《Transformer升级之路:10、RoPE是一种β进制编码》里介绍的NTK-RoPE,它本身有较好长度外推性,换用更大的$b$再微调相比不加改动的微调,起始损失更小,收敛也更快。该过程给人的感觉是:调大$b$完全是因为“先短后长”的训练策略,如果一直都用长文本训练似乎就没必要调大$b$了?

上周的论文《Base of RoPE Bounds Context Length》试图回答这个问题,它基于一个期望性质研究了$b$的下界,由此指出更大的训练长度本身就应该选择更大的底数,与训练策略无关。整个分析思路颇有启发性,接下来我们一起来品鉴一番。

点击阅读全文...