2^29363731-1不是素数!
By 苏剑林 | 2013-04-08 | 23758位读者 | 引用很小的时候就开始对素数感兴趣了,后来是在一本《未解之谜》上看到了梅森素数、完全数、孪生素数等等东西,觉得甚是好玩。在初中买了计算机之后,就关注到了Prime 95这个梅森素数的分布式计算程序,以前也尝试过运行它,不过由于那时候计算机配置较低,一般都是运行到20%左右就没有坚持下去了。
上大学入手了一台四核的笔记本,就在去年10月份左右再次运行了这个程序,由于是四核,一次性可以同时测试四个数字。经过半年的运行,今天终于测试完了第一个数字:$2^{29363731}-1$。正如预料中的,这不是一个素数。不管怎样,它是我第一个完成的测试,也算是自己的一个独立的成果啦,呵呵,自娱自乐一番。
费曼积分法(7):欧拉数学的综合
By 苏剑林 | 2013-03-27 | 36827位读者 | 引用费曼积分法(6):教科书上的两道练习题
By 苏剑林 | 2013-03-24 | 34500位读者 | 引用费曼积分法(5):欧拉数学的传承
By 苏剑林 | 2013-03-24 | 23692位读者 | 引用在大学第二学期,我们的《数学分析》终于龟速地爬行到了定积分这一章节。对于一些比较复杂的定积分,我总想用自己的方法来解决它,这就重新燃起了我对“费曼积分法——积分符号内取微分”的热情。尤其是我用费曼积分法解决了几道比较有趣复杂的定积分问题时,成就感高涨,遂在此总结,与大家共勉。
这和欧拉数学有什么关系呢?之前已经提到过,欧拉数学是用一种不严谨却极具创造性的方式,给予我们对数学的介乎感性和理性的直观理解。我觉得费曼积分法也属于这个范畴内,它着眼于用一种特殊的视角解决问题,而暂时忽略掉数学严密性。在读费曼的故事中,我感觉到这种思想是贯穿他一生的研究之中的。
本文继续对费曼积分法的研究,得出一些不是很严谨的结论,为以后的应用奠下基础。
一、不成立的函数
首先我们重新考虑$\int_0^{\infty} \frac{\sin x}{x}dx$。这一次我们将它引入复数范畴内,考虑:
$$\int_0^{\infty}\frac{\cos x+i \sin x}{x}dx=\int_0^{\infty}\frac{e^{ix}}{x}dx$$
单摆运动级数解:初试同伦分析
By 苏剑林 | 2013-03-13 | 21114位读者 | 引用开始之初,我偶然在图书馆看到了一本名为《超越摄动:同伦分析方法导论》,里边介绍了一种求微分方程近似解的新方法,关键是里边的内容看起来并不是十分难懂,因此我饶有兴致地借来研究了。果然,这是一种非常有趣的方法,在某种意义上来说,还是非常简洁的方法。这解决了我一直以来想要研究的问题:用傅里叶级数来近似描述单摆运动的近似解。当然,它带给我的冲击不仅仅是这些。为了得出周期解,我又同时研究了各种摄动方法的技巧,如消除长期项的PL(Poincaré–Lindstedt)方法。这同时增加了我对各种近似解析方法的了解。从开学到现在快三周的时间,我一直都在研究这些问题。
轻微的扰动——摄动法简介(3)
By 苏剑林 | 2013-03-07 | 40117位读者 | 引用微分方程领域大放光彩
虽然微分方程在各个计算领域都能一展才华,不过它最辉煌的光芒无疑绽放于微分方程领域,包括常微分方程和偏微分方程。海王星——“笔尖上发现的行星”——就是摄动法的著名成果,类似的还有冥王星的发现。天体力学家用一颗假设的行星的引力摄动来解释已知行星的异常运动,并由此反推未知行星的轨道。我们已不止一次提到过,一般的三体问题是混沌的,没有精确的解析解。这就要求我们考虑一些近似的方法,这样的方法发展起来就成为了摄动理论。
跟解代数方程一样,摄动法解带有小参数或者大参数的微分方程的基本思想,就是将微分方程的解表达为小参数或大参数的幂级数。当然,这是最直接的,也相当好理解,不过所求得的级数解有可能存在一些性态不好的情况,比如有时原解应该是一个周期运动,但是级数解却出现了诸如$t \sin t$的“长期项”,这是相当不利的,因此也发展出各种技巧来消除这些项。可见,摄动理论是一门应用广泛、集众家所大成的实用理论。下面我们将通过一些实际的例子来阐述这个技巧。
曾经我会一字不差地看完你的日志,
一点蛋疼的破事都会当成宝贝一样。
和你分享,
跟你在一起,
笑点低的莫名其妙。
你知道我所有的事,
我也收藏着你太多的秘密。
我们可以一直聊到凌晨,
好像从来不缺话题。
可是...
可是...
后来,我们慢慢失去了联系。
等我们发现
时间是贼了,
它早己把我们
说不完的话
偷光了。
偶尔遇见,
也只能尴尬一笑,
寒暄几句,
便再无联络。
你一定以为无情的我把过去都忘记了,
你以为我把你看得不再重要。
那么,你肯定不知道,
我常梦见我们一起仰望过的那片天空呢。
亲爱的老朋友,
和亲爱的曾经心心相印的人。
不联系不是因为你不重要,
而是我好怕,
我不再重要。
纠缠的时空(二):洛仑兹变换的矩阵(续)
By 苏剑林 | 2013-02-27 | 20729位读者 | 引用在上一篇文章中,我们以矩阵的方式推导出了洛仑兹变换。矩阵表述不仅仅具有形式上的美,还具有很重要的实用价值,比如可以很方便地寻找各种不变量。当洛仑兹变换用矩阵的方式表达出来后,很多线性代数中已知的理论都可以用在上边。在这篇小小的续集中,我们将尝试阐述这个思想。
本文中,继续设光速$c=1$。
我们已经得到了洛仑兹变换的矩阵形式:
\begin{equation}\left[\begin{array}{c} x\\t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}x'\\t' \end{array}\right]\end{equation}
最近评论