Transformer升级之路:18、RoPE的底数选择原则
By 苏剑林 | 2024-05-29 | 145960位读者 | 引用我们知道,在RoPE中频率的计算公式为$\theta_i = b^{-2i/d}$,底数$b$默认值为10000。目前Long Context的主流做法之一是,先在$b=10000$上用短文本预训练,然后调大$b$并在长文本微调,其出发点是《Transformer升级之路:10、RoPE是一种β进制编码》里介绍的NTK-RoPE,它本身有较好长度外推性,换用更大的$b$再微调相比不加改动的微调,起始损失更小,收敛也更快。该过程给人的感觉是:调大$b$完全是因为“先短后长”的训练策略,如果一直都用长文本训练似乎就没必要调大$b$了?
上周的论文《Base of RoPE Bounds Context Length》试图回答这个问题,它基于一个期望性质研究了$b$的下界,由此指出更大的训练长度本身就应该选择更大的底数,与训练策略无关。整个分析思路颇有启发性,接下来我们一起来品鉴一番。
Transformer升级之路:17、多模态位置编码的简单思考
By 苏剑林 | 2024-03-29 | 66814位读者 | 引用在这个系列的第二篇文章《Transformer升级之路:2、博采众长的旋转式位置编码》中,笔者提出了旋转位置编码(RoPE)——通过绝对位置的形式实现相对位置编码的方案。一开始RoPE是针对一维序列如文本、音频等设计的(RoPE-1D),后来在《Transformer升级之路:4、二维位置的旋转式位置编码》中我们将它推广到了二维序列(RoPE-2D),这适用于图像的ViT。然而,不管是RoPE-1D还是RoPE-2D,它们的共同特点都是单一模态,即纯文本或者纯图像输入场景,那么对于多模态如图文混合输入场景,RoPE该做如何调整呢?
笔者搜了一下,发现鲜有工作讨论这个问题,主流的做法似乎都是直接展平所有输入,然后当作一维输入来应用RoPE-1D,因此连RoPE-2D都很少见。且不说这种做法会不会成为图像分辨率进一步提高时的效果瓶颈,它终究是显得不够优雅。所以,接下来我们试图探寻两者的一个自然结合。
旋转位置
RoPE名称中的“旋转”一词,来源于旋转矩阵$\boldsymbol{\mathcal{R}}_n=\begin{pmatrix}\cos n\theta & -\sin n\theta\\ \sin n\theta & \cos n\theta\end{pmatrix}$,它满足
\begin{equation}\boldsymbol{\mathcal{R}}_m^{\top}\boldsymbol{\mathcal{R}}_n=\boldsymbol{\mathcal{R}}_{n-m}\end{equation}
Transformer升级之路:16、“复盘”长度外推技术
By 苏剑林 | 2024-01-26 | 80307位读者 | 引用回过头来看,才发现从第7篇《Transformer升级之路:7、长度外推性与局部注意力》开始,“Transformer升级之路”这个系列就跟长度外推“杠”上了,接连9篇文章(不算本文)都是围绕长度外推展开的。如今,距离第7篇文章刚好是一年多一点,在这一年间,开源社区关于长度外推的研究有了显著进展,笔者也逐渐有了一些自己的理解,比如其实这个问题远不像一开始想象那么简单,以往很多基于局部注意力的工作也不总是有效,这暗示着很多旧的分析工作并没触及问题的核心。
在这篇文章中,笔者尝试结合自己的发现和认识,去“复盘”一下主流的长度外推结果,并试图从中发现免训练长度外推的关键之处。
问题定义
顾名思义,免训练长度外推,就是不需要用长序列数据进行额外的训练,只用短序列语料对模型进行训练,就可以得到一个能够处理和预测长序列的模型,即“Train Short, Test Long”。那么如何判断一个模型能否用于长序列呢?最基本的指标就是模型的长序列Loss或者PPL不会爆炸,更加符合实践的评测则是输入足够长的Context,让模型去预测答案,然后跟真实答案做对比,算BLEU、ROUGE等,LongBench就是就属于这类榜单。
Transformer升级之路:14、当HWFA遇见ReRoPE
By 苏剑林 | 2023-08-24 | 33939位读者 | 引用在上一篇文章《Transformer升级之路:13、逆用Leaky ReRoPE》中,笔者尝试通过在训练阶段逆用Leaky ReRoPE的思路,使得推理阶段的位置编码变为正常的RoPE,从而在达到长度外推的同时解决ReRoPE推理变慢的缺点。遗憾的是,从实验结果来看,“Leaky ReRoPE → RoPE”的效果并不如“RoPE → ReRoPE/Leaky ReRoPE”,因此这个问题尚未完全解决。
此时,笔者想到此前在《Transformer升级之路:9、一种全局长度外推的新思路》提出的HWFA本身就具有一定的长度外推能力,如果跟ReRoPE“强强联合”,是否会有更好的效果?更关键是,HWFA的加入可以大幅度降低推理成本,从而弥补ReRoPE的不足!
温故
首先,“例行公事”地回顾一下HWFA。HWFA(Hybird Window-Full Attention)并非一个具体的模型,而是一种Attention的组合方式,能够在基本保持效果不变的前提下,增强Attention模型的长度外推能力,同时还能降低训练和推理成本。
Transformer升级之路:13、逆用Leaky ReRoPE
By 苏剑林 | 2023-08-14 | 22013位读者 | 引用上周在《Transformer升级之路:12、无限外推的ReRoPE?》中,笔者提出了ReRoPE和Leaky ReRoPE,诸多实验结果表明,它们能够在几乎不损失训练效果的情况下免微调地扩展LLM的Context长度,并且实现了“longer context, lower loss”的理想特性,此外跟NTK-aware Scaled RoPE不同的是,其中ReRoPE似乎还有表现出了无限的Context处理能力。
总之,ReRoPE看起来相当让人满意,但美中不足的是会增加推理成本,具体表现为第一步推理需要算两次Attention,以及后续每步推理需要重新计算位置编码。本文试图通过在训练中逆用Leaky ReRoPE的方法来解决这个问题。
回顾
让我们不厌其烦地重温一下:RoPE形式上是一种绝对位置编码,但实际达到的效果是相对位置编码,对应的相对位置矩阵是:
\begin{equation}\begin{pmatrix}0 & \\
1 & 0 & \\
2 & 1 & 0 &\\
3 & 2 & 1 & 0 & \\
\ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\small{L - 2} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\small{L - 1} & \small{L - 2} & \ddots & \ddots & \ddots & 3 & 2 & 1 & 0 & \\
\end{pmatrix}\label{eq:rope}\end{equation}
Transformer升级之路:12、无限外推的ReRoPE?
By 苏剑林 | 2023-08-07 | 69385位读者 | 引用自从在《Transformer升级之路:11、将β进制位置进行到底》中引入混合进制的思路进一步推广了NTK-aware Scaled RoPE后,笔者感觉类似思路的效果已经达到了上限,想要更大幅度的提升就必须另辟蹊径了。这时候笔者想起了此前构思过的一个思路,该思路由于复杂度较高所以被搁置下了,既然现在已经遇到了瓶颈,那么“唯一的办法就是最好的办法”,于是便将它重拾起来。
万万没想到的是,尽管该方法增加了一些推理复杂度,但它的实验效果却惊人地好——甚至隐约有无限的长度外推能力!因此,笔者迫不及待地撰写了本文来分享该方法。由于形式上跟ReLU激活函数的相似性,所以笔者将该方法命名为“ReRoPE (Rectified Rotary Position Embeddings)”。
重温
我们知道,RoPE形式上是一种绝对位置编码,但实际上给Attention带来的是相对位置信息,即如下的Toeplitz矩阵:
Transformer升级之路:11、将β进制位置进行到底
By 苏剑林 | 2023-07-31 | 54538位读者 | 引用在文章《Transformer升级之路:10、RoPE是一种β进制编码》中,我们给出了RoPE的$\beta$进制诠释,并基于进制转化的思路推导了能够在不微调的情况下就可以扩展Context长度的NTK-aware Scaled RoPE。不得不说,通过类比$\beta$进制的方式来理解位置编码,确实是一个非常美妙且富有启发性的视角,以至于笔者每次深入思考和回味之时,似乎总能从中得到新的领悟和收获。
本文将重新回顾RoPE的$\beta$进制诠释,并尝试将已有的NTK-aware Scaled RoPE一般化,以期望找到一种更优的策略来不微调地扩展LLM的Context长度。
进制类比
我们知道,RoPE的参数化沿用了Sinusoidal位置编码的形式。而不知道是巧合还是故意为之,整数$n$的Sinusoidal位置编码,与它的$\beta$进制编码,有很多相通之处。
Transformer升级之路:10、RoPE是一种β进制编码
By 苏剑林 | 2023-07-06 | 137974位读者 | 引用对关心如何扩展LLM的Context长度的读者来说,上周无疑是激动人心的一周,开源社区接连不断地出现令人振奋的成果。首先,网友@kaiokendev在他的项目SuperHOT中实验了“位置线性内插”的方案,显示通过非常少的长文本微调,就可以让已有的LLM处理Long Context。几乎同时,Meta也提出了同样的思路,带着丰富的实验结果发表在论文《Extending Context Window of Large Language Models via Positional Interpolation》上。惊喜还远不止此,随后网友@bloc97提出了NTK-aware Scaled RoPE,实现了不用微调就可以扩展Context长度的效果!
以上种种进展,尤其是NTK-aware Scaled RoPE,迫使笔者去重新思考RoPE的含义。经过分析,笔者发现RoPE的构造可以视为一种$\beta$进制编码,在这个视角之下,开源社区的这些进展可以理解为对进制编码编码的不同扩增方式。
最近评论