我在Performer中发现了Transformer-VQ的踪迹
By 苏剑林 | 2023-11-29 | 47450位读者 | 引用前些天我们在《VQ一下Key,Transformer的复杂度就变成线性了》介绍了“Transformer-VQ”,这是通过将Key序列做VQ(Vector Quantize)变换来实现Attention复杂度线性化的方案。诚然,Transformer-VQ提供了标准Attention到线性Attentino的一个非常漂亮的过渡,给人一种“大道至简”的美感,但熟悉VQ的读者应该能感觉到,当编码表大小或者模型参数量进一步增加时,VQ很可能会成为效果提升的瓶颈,因为它通过STE(Straight-Through Estimator)估计的梯度大概率是次优的(FSQ的实验结果也算是提供了一些佐证)。此外,Transformer-VQ为了使训练效率也线性化所做的梯度截断,也可能成为将来的效果瓶颈之一。
为此,笔者花了一些时间思考可以替代掉VQ的线性化思路。从Transformer-VQ的$\exp\left(QC^{\top}\right)$形式中,笔者联想到了Performer,继而“顺藤摸瓜”地发现原来Performer可以视为Soft版的Transformer-VQ。进一步地,笔者尝试类比Performer的推导方法来重新导出Transformer-VQ,为其后的优化提供一些参考结果。
VQ一下Key,Transformer的复杂度就变成线性了
By 苏剑林 | 2023-11-09 | 69438位读者 | 引用Efficient Transformer,泛指一切致力于降低Transformer的二次复杂度的工作,开始特指针对Attention的改进,后来更一般的思路,如傅里叶变换、线性RNN等,也被归入这个范畴。不得不说,为了降低Transformer的二次复杂度,各路大牛可谓是“八仙过海,各显神通”,各种神奇的思路“百花齐放”,笔者也从中学习到了不少理论知识。然而,尽管Efficient Transformer在理论上是精彩的,但实际上该领域一直都是不愠不火的状态,并没有实际表现十分出色的模型,在LLM火爆的今天,甚至已经逐渐淡出了大家的视野,也淡出了笔者的兴趣范围。
不过,最近有一篇论文《Transformer-VQ: Linear-Time Transformers via Vector Quantization》,却让笔者为之拍案叫绝。作者非常高明地洞察到,只需要对标准Attention的Key做一下VQ(Vector Quantize),复杂度就会自动降低为线性!这种线性化思路保留了标准Attention的形式,是标准Attention到线性Attention的一个完美过渡,同时最大程度上保留了标准Attention的能力。
高效难题
说起来,本站也算是比较早关注Efficient Transformer相关工作了,最早可以追溯到2019年解读Sparse Transformer的一篇博客《为节约而生:从标准Attention到稀疏Attention》。此后,陆续写的关于Efficient Transformer的其他博文还有
在查找量子化有关资料的时候,笔者查找到了一系列名为《漫谈几何量子化》的文章,并进一步查询得知,作者为季候风,原来发表在繁星客栈(顺便提一下,繁星客栈是最早的理论物理论坛之一,现在已经不能发帖了,但是上面很多资料都弥足珍贵),据说这是除正则量子化和路径积分量子化外的第三种量子化方法。网上鲜有几何量子化的资料,更不用说是中文资料了,于是季候风前辈的这一十五篇文章便显得格外有意义了。
然而,虽然不少网站都转载了这系列文章,但是无一例外地,文章中的公式图片已经失效了,后来笔者在百度网盘那找到其中的十四篇pdf格式的(估计是网友在公式图片失效前保存下来的),笔者通过替换公式服务器的方式找回了第十五篇,把第十五篇也补充进去了。(见漫谈几何量子化(原文档).zip)
虽然这样已经面前能够阅读了,但是总感觉美中不足,虽然笔者花了三天时间把文章重新用$\LaTeX$录入了,主要是把公式重新录入了,简单地排版了一下。现放出来与大家分享。
最近评论