【不可思议的Word2Vec】 2.训练好的模型
By 苏剑林 | 2017-04-03 | 436384位读者 | 引用由于后面几篇要讲解Word2Vec怎么用,因此笔者先训练好了一个Word2Vec模型。为了节约读者的时间,并且保证读者可以复现后面的结果,笔者决定把这个训练好的模型分享出来,用Gensim训练的。单纯的词向量并不大,但第一篇已经说了,我们要用到完整的Word2Vec模型,因此我将完整的模型分享出来了,包含四个文件,所以文件相对大一些。
提醒读者的是,如果你想获取完整的Word2Vec模型,又不想改源代码,那么Python的Gensim库应该是你唯一的选择,据我所知,其他版本的Word2Vec最后都是只提供词向量给我们,没有完整的模型。
对于做知识挖掘来说,显然用知识库语料(如百科语料)训练的Word2Vec效果会更好。但百科语料我还在爬取中,爬完了我再训练一个模型,到时再分享。
模型概况
这个模型的大概情况如下:
$$\begin{array}{c|c}
\hline
\text{训练语料} & \text{微信公众号的文章,多领域,属于中文平衡语料}\\
\hline
\text{语料数量} & \text{800万篇,总词数达到650亿}\\
\hline
\text{模型词数} & \text{共352196词,基本是中文词,包含常见英文词}\\
\hline
\text{模型结构} & \text{Skip-Gram + Huffman Softmax}\\
\hline
\text{向量维度} & \text{256维}\\
\hline
\text{分词工具} & \text{结巴分词,加入了有50万词条的词典,关闭了新词发现}\\
\hline
\text{训练工具} & \text{Gensim的Word2Vec,服务器训练了7天}\\
\hline
\text{其他情况} & \text{窗口大小为10,最小词频是64,迭代了10次}\\
\hline
\end{array}$$
【不可思议的Word2Vec】 1.数学原理
By 苏剑林 | 2017-04-02 | 57378位读者 | 引用对于了解深度学习、自然语言处理NLP的读者来说,Word2Vec可以说是家喻户晓的工具,尽管不是每一个人都用到了它,但应该大家都会听说过它——Google出品的高效率的获取词向量的工具。
Word2Vec不可思议?
大多数人都是将Word2Vec作为词向量的等价名词,也就是说,纯粹作为一个用来获取词向量的工具,关心模型本身的读者并不多。可能是因为模型过于简化了,所以大家觉得这样简化的模型肯定很不准确,所以没法用,但它的副产品词向量的质量反而还不错。没错,如果是作为语言模型来说,Word2Vec实在是太粗糙了。
但是,为什么要将它作为语言模型来看呢?抛开语言模型的思维约束,只看模型本身,我们就会发现,Word2Vec的两个模型 —— CBOW和Skip-Gram —— 实际上大有用途,它们从不同角度来描述了周围词与当前词的关系,而很多基本的NLP任务,都是建立在这个关系之上,如关键词抽取、逻辑推理等。这几篇文章就是希望能够抛砖引玉,通过介绍Word2Vec模型本身,以及几个看上去“不可思议”的用法,来提供一些研究此类问题的新思路。
SVD分解(三):连Word2Vec都只不过是个SVD?
By 苏剑林 | 2017-02-23 | 96758位读者 | 引用这篇文章要带来一个“重磅”消息,如标题所示,居然连大名鼎鼎的深度学习词向量工具Word2Vec都只不过是个SVD!
当然,Word2Vec的超级忠实粉丝们,你们也不用太激动,这里只是说模型结构上是等价的,并非完全等价,Word2Vec还是有它的独特之处。只不过,经过我这样解释之后,估计很多问题就可以类似想通了。
词向量=one hot
让我们先来回顾一下去年的一篇文章《词向量与Embedding究竟是怎么回事?》,这篇文章主要说的是:所谓Embedding层,就是一个one hot的全连接层罢了(再次强调,这里说的完全等价,而不是“相当于”),而词向量,就是这个全连接层的参数;至于Word2Vec,就通过大大简化的语言模型来训练Embedding层,从而得到词向量(它的优化技巧有很多,但模型结构就只是这么简单);词向量能够减少过拟合风险,是因为用Word2Vec之类的工具、通过大规模语料来无监督地预训练了这个Embedding层,而跟one hot还是Embedding还是词向量本身没啥关系。
有了这个观点后,马上可以解释我们以前的一个做法为什么可行了。在做情感分类问题时,如果有了词向量,想要得到句向量,最简单的一个方案就是直接对句子中的词语的词向量求和或者求平均,这约能达到85%的准确率。事实上这也是facebook出品的文本分类工具FastText的做法了(FastText还多引入了ngram特征,来缓解词序问题,但总的来说,依旧是把特征向量求平均来得到句向量)。为什么这么一个看上去毫不直观的、简单粗暴的方案也能达到这么不错的准确率?
最近评论