我们在研究地球附近的小天体运动时,如果把天体和地球看作一个二体系统,那最多只能算上一个零级近似,如果使用“地球+月球+小天体”组成的圆形限制性三体问题模型,那可以算上一个二级近似了。那么,一级近似又是什么了。BoJone认为,它就是本文将要讲的“双固定引力中心问题”了,也叫“双不动中心问题”,英文名是two fixed-center problem。这是一种特殊的限制性三体问题。在这个三体系统中,两个主天体(或称有限质量天体)固定不动,第三个小天体在两个固定的主天体吸引下运动。欧拉、拉格朗日、勒让德、雅可比等人很早就研究过这个问题。其中,欧拉最先成功地求出了这个系统的积分。[引用]
另外,双固定引力中心问题还有另外一个应用,在研究人造卫星的运动时,可以只考虑地球引力,但是由于地球不是完美的球体,把其看成一个质点其实不十分精确,要是把它拆分为两个引力源,就可以很大程度上提高精确度。毕竟双固定引力中心问题是完全可以积分的,可以作为一个比较好的中间轨道(介乎圆锥曲线和精确轨道之间的)。
我们经常听说牛顿力学、相对论力学、量子力学等物理名词,也不时会听到“理论力学”。其实,“理论力学”这个名词是不大妥当的,因为这很容易会让人误认为这是一种新的力学体系。而事实上,理论力学并不是像牛顿力学那样是一种力学体系,而是一种研究力学的方法,而研究的对象在多数情况下依然是经典力学(翻开任意一本《理论力学》教程都不难发现这一点)。简单来讲,它把牛顿时代用微积分来研究力学的方法转变为了“变分”,变“常微分”为“偏微分”。看上去这有点“化简为繁”,但事实上这样的一个转变却带来了力学研究的一个巨大的飞跃。
说到这里,也许有的读者会感到害怕了:这里边肯定又涉及了各种高深莫测的高等数学方法,我们只能望而却步。的确,理论力学中的方法很是深奥,纵使是一个优秀的大学数理本科生,也可能要花上一年多时间才能学完一本《理论力学》。可是,通过最小作用量原理的方法去研究物理又显得如此地诱人。难道像我们这些初级人士就无法亲身体验理论力学方法给我们带来的巨大便利和不一样的体验了吗?
最近评论