24 Jul

《向量》系列——3.当天体力学遇到向量(1)

不知道各位读者还记得BoJone在《方程与宇宙》这一章中写了整整三篇文章来学习天体力学中的二体问题吗?虽然对二体问题基本上做了一个描述,但是依旧是冰山一角。而在最近写的几篇文章中,BoJone又强调了“向量”的巨大作用。那么,当天体力学与向量碰头后,会发生什么大事呢?难道,火星撞上了地球?

点击阅读全文...

4 Apr

数值方法解方程之终极算法

呵呵,做了一回标题党,可能说得夸张了一点。说是“终极算法”,主要是因为它可以任意提高精度、而且几乎可以应付任何非线性方程(至少理论上是这样),提高精度是已知的迭代式上添加一些项,而不是完全改变迭代式的形式,当然在提高精度的同时,计算量也会随之增大。其理论基础依旧是泰勒级数。

我们考虑方程$x=f(y)$,已知y求x是很容易的,但是已知x求y并不容易。我们考虑把y在$(x_0,y_0)$处展开成x的的泰勒级数。关键是求出y的n阶导数$\frac{d^n y}{dx^n}$。我们记$f^{(n)}(y)=\frac{d^n x}{dy^n}$,并且有
$$\frac{dy}{dx}=\frac{1}{(\frac{dx}{dy})}=f'(y)^{-1}$$

点击阅读全文...

3 Apr

《方程与宇宙》:抛物线与双曲线轨道(三)

圆锥曲线

圆锥曲线

经过上两回的讨论,我们已经基本摸清了二体问题的运动情况。我们已经找到了二体问题在轨道为椭圆的时候的所有积分,给出了“活力公式”等常用公式的证明,并且留下了一些没有解答的问题。那就是在轨道为抛物线和双曲线时的最后一个积分还没有找出来,现在我们解决这两个问题。其中的关键积分依旧是
$\dot{r}^2={2\mu}/r-{\mu a(1-e^2)}/r^2-\frac{\mu}{a}$——(12)

点击阅读全文...

27 Mar

《方程与宇宙》:活力积分和开普勒方程(二)

二体运动

二体运动

上一回的讨论中,我们已经解决了大部分的问题,并且表达了找到r或者$\theta$关于时间t的函数的希望。在最后的内容中,我们做了以下工作:

由(7)得到$\dot{\theta}=h/r^2$,代入(6)得到:
$$\ddot{r} -h^2/r^3=-\frac{\mu}{r^2}\tag{10}$$这是一个二阶微分方程,它的解很容易找出,但是这个积分太复杂:
$$\dot{r}\frac{d\dot{r}}{dr}=h^2/r^3-\frac{\mu}{r^2}$$
$\dot{r}d\dot{r}=(h^2/r^3-\frac{\mu}{r^2})dr$,两端积分
$$\dot{r}^2={2\mu}/r-h^2/r^2+K_1\tag{11}$$$$\Rightarrow {dt}/{dr}=\frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}$$
$t=\int \frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}dr$

点击阅读全文...

6 Mar

(原创)切抛物线法解方程

牛顿法使用的是函数切线的方程的零点来逼近原函数的零点,他所使用的是“切直线”,要是改为同曲率的“切抛物线”,则有更稳定的收敛效果以及更快的收敛速度

设函数$y=f(x)$在$(x_0,y_0)$处有一条“切抛物线”$y=ax^2+bx+c$,则应该有

$a(x_0+\Delta x)^2+b(x_0+\Delta x)+c=f(x_0+\Delta x)$-------(A)
$ax_0^2+bx_0+c=f(x_0)$-------(B)
$a(x_0-\Delta x)^2+b(x_0-\Delta x)+c=f(x_0-\Delta x)$-------(C)

其中$lim_{\Delta x->0}$

点击阅读全文...

27 Feb

“n次方程有n个根”的证明

代数基本定理:任何一个一元复系数多项式都至少有一个复数根。也就是说,复数域是代数封闭的。

虽说这有其名,但却无其实,它并不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理(Fundamental theorem of algebra)。

建立在此前提上,我们可以推出:

一元复系数n次代数方程在复数范围内都有n个根(有可能是共轨复根)。

点击阅读全文...

6 Feb

直上云霄的无穷指数方程

昨天在浏览网页的时候,发现了一道有趣的方程:
$$x^{x^{x^{\dots}}}=2$$
各位读者先别急着往下看,不妨自己求解一下?

点击阅读全文...

6 Sep

四次方程的根式求解(通俗版)

前些时间发表了三次方程的一般求解 ,并通过了维基百科链接到了这里来,想不到带来了很多的人气,看到大家还是比较需要这方面的资料的。在此之前曾经承诺过会把4次方程的求根公式也写出来,现在终于有时间了,就此一写,希望能够为大家带来帮助。

$$ax^4+bx^3+cx^2+dx+e=0(a!=0)$$

仍然是这两句话:网上的资料中,一是缺乏描述专业数学公式的相关程序(很多网站都是这样);二是语言过于专业,不能大众化(如维基百科)。如果一开始我就去看wiki,那么我保证我到现在还不能弄懂。

点击阅读全文...